
CSCI 1515: Applied Cryptography

P. Miao

Spring 2025

These are lecture notes for CSCI 1515: Applied Cryptography taught at Brown
University by Peihan Miao in the Spring of 2025.

These notes were originally taken by Jiahua Chen in Spring 2023, and were updated
in Spring 2024 by Sudatta Hor. They are currently being maintained by John Wilkinson.
There has been gracious help and input from classmates and fellow TAs. Please direct
any mistakes/errata to a thread on Ed, or feel free to pull request or submit an issue to
the notes repository.

Notes last updated April 24, 2025.

Contents

1 January 22, 2025 7
1.1 Introduction . 7

1.1.1 Staff . 7
1.1.2 Course Philosophy and Logistics . 7

1.2 What is cryptography? . 8
1.3 Secure Communication . 9

1.3.1 Message Secrecy . 10
1.3.2 Message Integrity . 12
1.3.3 Signal and Auth . 14

1.4 Zero-Knowledge Proofs . 14
1.5 Fully Homomorphic Encryption . 15
1.6 Secure Multi-Party Computation . 18
1.7 Further Topics . 21
1.8 Q & A . 21

2 January 27, 2025 23
2.1 Encryption Scheme Basics . 23

2.1.1 Syntax . 24
2.1.2 Symmetric-Key Encryption Schemes . 25
2.1.3 Public-Key Encryption Schemes . 31
2.1.4 RSA . 34

1

https://github.com/BrownAppliedCryptography/notes

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

3 January 29, 2025 36
3.1 Basic Number Theory, continued . 36
3.2 RSA Encryption, continued . 36
3.3 Intro to Group Theory . 38
3.4 Computational Assumptions . 39
3.5 ElGamal Encryption . 40
3.6 Secure Key Exchange . 41
3.7 Prime Order Subgroups . 42
3.8 Message Integrity . 42

3.8.1 Syntax . 44

4 February 3, 2025 45
4.1 Message Integrity . 45

4.1.1 Message Authentication Code . 45
4.1.2 Digital Signature . 45
4.1.3 Syntax . 46
4.1.4 Chosen-Message Attack . 46

4.2 RSA Signatures . 48
4.2.1 Other Signature Schemes . 48

4.3 A Summary So Far . 49
4.4 Authenticated Encryption . 49

4.4.1 Encrypt-and-MAC? . 51
4.4.2 MAC-then-Encrypt? . 52
4.4.3 Chosen Ciphertext Attack Security . 52
4.4.4 Encrypt-then-MAC . 53

4.5 Hash Function . 54

5 February 05, 2025 55
5.1 Hash Function, continued . 55
5.2 Collision-Resistant Hash Function (CRHF) . 55

5.2.1 Random Oracle Model . 56
5.2.2 Constructions for Hash Function . 57
5.2.3 Applications . 57

5.3 Putting it Together: Secure Communication . 59
5.3.1 Diffie-Hellman Ratchet . 60

5.4 Block Cipher . 61
5.4.1 Pseudorandom Function (PRF), continued 61
5.4.2 Pseudorandom Permutation (PRP) . 62

6 February 10, 2025 64
6.1 Recap . 64
6.2 History of AES and DES . 64
6.3 Block Ciphers . 64

6.3.1 Modes of Operation . 64

7 February 12, 2025 69
7.0.1 CBC-MAC . 69
7.0.2 Encrypt-last-block CBC-MAC (ECBC-MAC) 70

2

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

7.1 Putting it Together . 71
7.2 One-Sided Secure Authentication . 74
7.3 Password-Based Authentication . 75

7.3.1 Salting . 76
7.3.2 Two-Factor Authentication . 77

8 February 19, 2025 79
8.1 A Brief Recap: Secure Authentication . 79
8.2 Public Key Infrastructure . 80

8.2.1 Certificate Chain . 81
8.3 Case Studies . 83

8.3.1 SSH . 83
8.3.2 Secure Messaging . 84
8.3.3 Group Chats . 85

9 February 24, 2025 88
9.1 Single Sign-On (SSO) Authentication . 88
9.2 Zero-Knowledge Proofs . 88
9.3 Zero-Knowledge Proofs . 89

9.3.1 Proof of Knowledge . 90
9.3.2 Honest-Verifier Zero-Knowledge . 90
9.3.3 Zero-Knowledge (Malicious Verifier) . 91
9.3.4 Zero-Knowledge Proof of Knowledge . 91

9.4 Example: Schnorr’s Identification Protocol . 92
9.4.1 Proof of Knowledge . 92
9.4.2 Honest-Verifier Zero-Knowledge . 93

9.5 Example: Diffie-Hellman Tuple . 94

10 February 26, 2025 96
10.1 Anonymous Online Voting . 96
10.2 Zero-Knowledge Proof of Knowledge . 96
10.3 Example: Diffie Hellman Tuple . 96

10.3.1 Non-Interactive Zero-Knowledge (NIZK) Proofs 98
10.3.2 Fiat-Shamir Heuristic . 101

10.4 Putting it Together: Anonymous Online Voting . 102
10.4.1 Homomorphic Encryption . 102

11 March 3, 2025 103
11.1 Anonymous Online Voting . 103
11.2 Additively Homomorphic Encryption . 103
11.3 Threshold Encryption . 104

11.3.1 Threshold Encryption: Elgamal . 104
11.4 Voting Framework . 105

11.4.1 Correctness of Partial Decryption . 105
11.4.2 Correctness of Encryption . 106

11.5 Proving AND/OR Statements . 106

3

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

12 March 5, 2025 108
12.1 Blind Signature . 108
12.2 RSA Blind Signature . 108
12.3 Anonymous Online Voting . 109
12.4 Multiple Candidates . 110
12.5 More Examples of Sigma Protocols . 110

13 March 10, 2025 113
13.1 Zero-Knowledge Proof for Graph 3-Coloring (All NP) 113
13.2 Commitment Scheme . 114
13.3 Zero-Knowledge Proof for Graph 3-Coloring . 115
13.4 Circuit Satisfiability . 116

13.4.1 Proof Systems for Circuit Satisfiability . 117

14 March 12, 2025 118
14.1 Succinct Non-Interactive Argument (SNARG) . 118
14.2 Merkle Tree Commitment Scheme . 119
14.3 Anonymous Transactions on Blockchains . 120

14.3.1 Byzantine Agreement . 121
14.3.2 Longest Chain Rule . 122
14.3.3 Extensions to Blockchain . 122

15 March 17, 2025 123
15.1 Fully Homomorphic Encryption (FHE) . 123
15.2 Applications . 123
15.3 FHE Definition . 125

15.3.1 Constructions . 126
15.3.2 SWHE over Integers . 127

15.4 Learning With Errors (LWE) Assumption . 129

16 March 19, 2025 130
16.1 Learning With Errors (LWE) Assumption . 130
16.2 Lattice-Based Cryptography . 131
16.3 Post-Quantum Encryption: Regev . 132
16.4 Ring LWE (RLWE) Assumption . 133
16.5 SWHE from RLWE (BFV) . 134
16.6 Relinearization in SWHE from RLWE . 135

17 March 31, 2025 137
17.1 Fully Homomorphic Encryption (FHE) . 137
17.2 Private Information Retrieval (PIR) . 137
17.3 FHE Constructions . 138
17.4 Outsourcing Computation by FHE . 141
17.5 Outsourcing Computation by Secure Hardware . 141

17.5.1 Intel Software Guard Extension (SGX) . 142

18 April 2, 2025 144
18.1 Hardware Secure Module (HSM) . 144

4

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

18.2 Secure Multi-Party Computation . 144
18.2.1 2-Party Computation . 144
18.2.2 Multiple Parties! . 145

18.3 Definition . 147
18.3.1 Feasibility Results . 148

18.4 Oblivious Transfer . 148

19 April 7, 2025 149
19.1 Multi-Party Computation - Big Picture . 149
19.2 GMW . 150

19.2.1 AND Gates . 151
19.2.2 Complexities . 151

20 April 9, 2025 153
20.1 Adversary Powers . 153
20.2 Yao’s Garbled Circuit for Arbitrary function . 153
20.3 Oblivious Transfer . 154

20.3.1 OT Extension . 156
20.4 Putting it Together: Semi-Honest 2PC . 156

21 April 14, 2025 158
21.1 Oblivious Transfer . 158
21.2 Yao’s Garbled Circuit for Arbitrary function . 158

21.2.1 Optimizations . 160
21.3 Comparing Yao’s and GMW . 161

22 April 16, 2025 162
22.1 Private Set Intersection (PSI) . 162

22.1.1 Naïve Solution . 162
22.1.2 DDH-Based PSI . 163

22.2 Privacy-Preserving Machine Learning (PPML) . 164
22.2.1 Linear Regression . 164
22.2.2 Logistic Regression . 165
22.2.3 Neural Networks . 166

23 April 21, 2025 167
23.1 Federated Learning . 167
23.2 Differential Privacy . 168

23.2.1 Randomized Response . 170
23.2.2 Laplace Mechanism . 170

23.3 Elliptic Curve Cryptography . 172

24 April 23, 2025 175
24.1 Elliptic Curve Cryptography (cont.) . 175
24.2 Block Cipher . 177
24.3 Substitution-Permutation Network (SPN) . 177
24.4 Attacks on Reduced-Round SPN . 179
24.5 Feistel Network . 179

5

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

24.6 Data Encryption Standard (DES) . 180

6

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§1 January 22, 2025

§1.1 Introduction

The course homepage is at https://cs.brown.edu/courses/csci1515/spring-2025/, where you
can find information such as the syllabus, projects, homeworks, calendar, lectures and more.

The course is offered in-person in Salomon 001, as well as synchronously over Zoom and recorded
asynchronously (lectures posted online). Lecture attendance and participation is highly encour-
aged!

EdStem will be used for course questions, and Gradescope is used for assignments.

§1.1.1 Staff

Peihan has been at Brown for a couple of years and this was the second time she is teaching this
course. Before Brown, she was at the University of Illinois Chicago. Before that, she finished her
PhD at UC Berkeley in 2019 with a focus in cryptography. Afterwards, she worked in industry
for a couple of years (Visa) before deciding to come back to academia. She still collaborates with
industry to see what problems need to be solved in practice.

During her PhD, she started off doing more theoretical cryptography but also did internships and
found applied cryptography fascinating as well. Now she works in both.

Our course staff have all taken or TA-ed the course before and are excited to help you learn!

§1.1.2 Course Philosophy and Logistics

If look up other applied cryptography courses online or at other universities, you will find courses
that have “applied” in their title. However, if you look at their syllabus or content, it’s still mostly
theoretical crypto. This may (1) deter students from learning about crypto and (2) leave a gap
between theoretical crypto and crypto in practice. (2) is bad because if someone makes a mistake
in the crypto domain, the consequences are often significant.

As such, it’s helpful for students to get hands-on experience with cryptography:

• How cryptography has been used in practice and

• How cryptography will be used and implemented in the future.

The closest similar course is found at Stanford, which covers theoretical crypto in the first half and
more applied crypto in the second. But even that course only covers very basic crypto that are very

7

https://cs.brown.edu/courses/csci1515/spring-2025/
https://docs.google.com/document/d/14G3OhOOvd6b84vhYAXK9slAUbNgQte-34sGe9bhMOYA/edit?usp=sharing

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

well established. In the past 10 years or so, there are new and exciting topics in crypto that are
gradually becoming more and more common which we will also cover in this course.

For this course, it will be much less about math and proofs, and much more about how you can use
these tools to do something more fun. It will be coding heavy and all projects will be implemented
in C++ using crypto libraries.

If, however, you are interested in the theoretical or mathematical side, you might consider other
courses at Brown like CSCI 1510 and MATH 1580.

There is an option to capstone this course, contact Peihan about this. It would also be best to find
a partner who is also capstoning this course.

The following is the grading policy:

Type Percentage

Introductions 1%
Project 0 5%
Projects 1 & 2 & 4 30% (10% each)
Projects 3 & 5 24% (12% each)
Homeworks 25% (5% each)
Final Project 15%

You have 2 free late days for each one of the projects. There are no late days for homeworks, as we
want to release the solution guide as soon as possible.

All projects are independent, but collaboration is allowed and encouraged. However, you must write
up your own code.

If you’re sick, let Peihan know with a Dean’s note.

§1.2 What is cryptography?

At a high level, cryptography is a set of techniques that protect sensitive or important information.

Question. Where is cryptography used in practice? What guarantees do we want in these scenarios?

• Online transactions

– When you make a purchase, you might not want people to see your bank balance, what
else you have purchased, etc.

8

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

– You also want to ensure that it was really you who purchased the item and not somebody
else i.e. authentication

• Secure messaging

– End-to-end texting, iMessage

– We don’t want anyone else to see our messages

• Online voting

– Privacy of votes, validity of votes

• Databases

– Secure storage

§1.3 Secure Communication

We’ll start with the most classic form of cryptography: secure communication.

Assume Alice wants to communicate to Bob “Let’s meet at 9am”, what are some security guarantees
we want?

• Eve cannot see the message from Alice to Bob.

• Eve cannot alter the message from Alice to Bob.

These two guarantees are the most important guarantees! The former is called message secrecy, the
latter is called message integrity.

9

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§1.3.1 Message Secrecy

Definition 1.1 (Message Secrecy)
We want cryptography to allow Alice to encrypt the message m (which we call plaintext) by
running an algorithm that produces a ciphertext c. We call this an encryption scheme.

Bob will be able to receive the ciphertext c and run a decrypt algorithm to produce the message
m again. This is akin to a secure box that Alice locks up, and Bob unlocks, while Eve does not
know the message. The easiest way is for Alice and Bob to agree on a shared secret key.

In this model, Eve is a weaker adversary, an eavesdropper. Eve can only see the message, not
alter it.

Example 1.2 (Substitution Cipher)
The key that Alice and Bob jointly uses is a permutation mapping from {A . . . Z} → {A . . . Z}.
This mapping is the secret key.

Bob also has the mapping, and takes the inverse of the permutation to retrieve the message.

10

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

This scheme is not quite secure! Why?

Given a large enough text, you can apply frequency analysis and break the substitution cipher.

Remark. This encryption scheme also requires that Alice and Bob meet up in person to exchange this
shared private key. Schemes like this are called symmetric-key, secret-key, or private-key encryption.
They need to somehow agree first on the same secret key.

11

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 1.3 (Public-key Encryption)
There is another primitive that is much stronger: public-key encryption. Bob generate both a
public key and a private key, and then publishes his public key. You can consider a lock where
you don’t need a key to lock it1, and only Bob has the key to unlock it.

This is seemingly magic! Bob could publish a public key on his homepage, anyone can encrypt
using a public key but only Bob can decrypt. Stay tuned, we will see public-key encryption
schemes next lecture!

§1.3.2 Message Integrity

Alice wants to send a message to Bob again, but Eve is stronger! Eve can now tamper with the
message.

1You literally click it closed

12

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Bob wants to ensure that the message actually comes from Alice. Does our previous scheme (of
encrypting messages) solve this problem? Nope!

Eve can change the ciphertext to something else, they could pretend to be Alice. In secret-key
schemes, if Eve figures out the secret-key, they can forge messages from Alice. Even if Eve doesn’t
know the underlying message, they could still change it to some other ciphertext which might be
correlated to the original ciphertext, without knowing the underlying message. We’ll see how Eve
can meaningfully do this in some schemes. Alice could send a message “Let’s meet at x AM” and
Eve could tamper this to say “Let’s meet at x+ 1 AM.”

This is sort of an orthogonal problem to message secrecy. For example, when Alice logs in to Google,
Google needs to verify that Alice actually is who she claims to be.

This property that we want is called message integrity.

13

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§1.3.3 Signal and Auth

The first two projects are Signal and Auth, whose aim will be to cover secure messaging and secure
authentication.

Projects Overview

0. Cipher Warm-up, you will implement some basic cryptographic schemes.

1. Signal Secure Communication: how to communicate in secret.

2. Auth Secure Authentication: how to authenticate yourself.

3. Vote Zero-Knowledge Proofs: we’ll use ZKPs to implement a secure voting scheme.

4. PIR Fully Homomorphic Encryption: a form of post-quantum cryptography.

5. Yaos Secure Multiparty Computation: we’ll implement a way to run any function securely
between two parties.

We’ll now introduce the latter three projects!

§1.4 Zero-Knowledge Proofs

This is to prove something without revealing any additional knowledge.

For example, Alice may want to

• Prove she knows the difference in taste between Coke and Pepsi without revealing how

• Prove that you have a bug in your code without revealing the bug

• She has the secret key for this ciphertext without revealing the plaintext

• Prove that she owns two different colored pens to her colorblind friend Bob

How is this possible? Let’s examine this first scenario, which closely follows the red-green pens
example from class orthered− greenballsproblem.

Example
Alice claims to have two different colored markers. She wants to prove this to her friend Bob,
but there is an issue - Bob is colorblind!

Bob will randomly sample a bit b
$← {0, 1}, with b = 0 being "Stay" and b = 1 being "Swap".

14

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Bob will then either swap the order of the markers and show them to Alice, or keep them the
same. Alice will give a guess b′ of whether Bob swapped or not.

If the statement is true, Pr[b′ = b] = 1 (Alice always gives the correct prediction).

If the statement is false, Pr[b′ = b] = 1
2 (Alice is guessing with 0.5 probability).

To enhance this, we can run this a total of k times. If we run it enough times, Bob will be more
and more confident in believing this. Alice getting this correct by chance has a 1

2k
probability.

The key idea, however, is that Bob doesn’t gain any knowledge of how Alice differentiates.

Remark. This is a similar strategy in proving graph non-isomorphism.

For people who have seen this before, generally speaking, any NP language can be proved in
zero-knowledge. Alice has the witness to the membership in NP language.

§1.5 Fully Homomorphic Encryption

We’ll come back to the secure messaging example.

Alice wants to send Bob a message. She encrypts it somehow and sends a ciphertext c1 = Enc(m1).

15

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

A nice feature for some encryption schemes is for Eve to do some computation homomorphically on
the ciphertexts. Eve might possibly want to add ciphertexts (that leads to plaintext adding)

c1 = Enc(m1), c2 = Enc(m2)⇒ c′ = Enc(m1 +m2)

or perhaps c′′ = Enc(m1 ·m2), or compute arbitrary functions. Sometimes, this is simply adding
c1 + c2, but usually not.

We want to hopefully compute any function in polynomial time!

Example (Outsourced Computation)
Alice has some messages but doesn’t have enough compute. There is a server that has a lot of
compute!

16

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Alice encrypts her data and stores it in the server. At some point, Alice might want to compute
a function on the encrypted data on the server, without the server revealing the original data.
For example, she may want to search across that data without the server decrypting it (or
sending her the entire encrypted DB). With homomorphic encryption, the server may be able
to query and return an encrypted value to Alice without learning anything about the query
itself.

This is an example of how fully homomorphic encryption can be useful.

Remark. This problem was not solved until 2009 (when Peihan started her undergrad). Theoretically,
it doesn’t even seem that possible! Being able to compute functions on ciphertexts that correspond to
functions on plaintexts.

To construct fully-homomorphic encryption, we’ll be using lattice-based cryptography which is a
post-quantum secure!

17

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§1.6 Secure Multi-Party Computation

Example (Secure AND)
Alice and Bob go on a first date, and they want to figure out whether they want to go on a
second date. They will only go on a second date if and only if both agree to a second date.

How will they agree on this? They could tell each other, but this could be embarrassing. One
way is for them to share with a third-party (this is what dating apps do!). However, there
might not always be an appropriate third party (in healthcare examples, not everyone can be
trusted with the data).

In this case, Alice has a choice bit x ∈ {0, 1} and Bob has a choice bit y ∈ {0, 1}. They are
trying to jointly compute f(x, y) = x ∧ y.

18

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Remark 1.4. Couldn’t a party still figure out how the other party feels? For example, if Bob’s
bit was 1 and the joint result was 0, Bob can infer that Alice’s bit was 0.

This is, in effect, the best we can do. The ideal guarantee is that each party only learns any
information they can infer from the output and their input. However, they should not learn
anything more.

What are we trying to achieve here? We want to jointly compute some function, where each party
has private input, such that each party only learns the output. They should not learn anything
about other partys’ inputs.

Example (Yao’s Millionaires’ Problem)
Perhaps, Alice and Bob wants to figure out who is richer. The inputs are x ∈ {0, 1}1000 and
y ∈ {0, 1}1000 (for simplification, let’s say they can express their wealth in 1000 bits). The
output is the person who has the max.

f(x, y) =

{
Alice if x > y

Bob otherwise

Example (Private Set Intersection)
Alice and Bob meet for the first time and want to determine which of their friends they share.
However, they do not want to reveal who specifically are their friends.

X is a set of A’s friends X = {friend1A, friend2A, · · · , friendnA} and Bob also has a set Y =
{friend1B, friend2B, · · · , friendmB}. They want to jointly compute

f(X,Y) = X ∩ Y.

You might need to reveal the cardinality of these sets, but you could also pad them up to a
maximum number of friends.

This has a lot of applications in practice! In Google Chrome, your browser will notify you that
your password has been leaked on the internet, without having access to your passwords in the
clear. X will be a set of your passwords, and Google will have a set Y of leaked passwords.
The intersection of these sets are which passwords have been leaked over the internet, without
revealing all passwords in the clear.

Question. Isn’t the assumption that the size of input records is revealed weaker than using a
trusted third-party?

Yes, however in some cases (hospital health records), parties are legally obliged to keep data secure.
We wish for security more than the secrecy of cardinality.

19

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In the general case, Alice and Bob have some inputs x and y with bounded length, and they
want to jointly compute some function f on these inputs. This is Secure Two-Party Computation.
Furthermore, there could be multiple parties x1, . . . , xn that jointly compute f(x1, . . . , xn) that
hides each input. This is Secure Multiparty Computation.

We’ll explore a toy example with the bit-AND from the dating example.

Example (Private Dating)
Alice and Bob have choice bits x ∈ {0, 1} and y ∈ {0, 1} respectively. There is a physical round
table with 5 identical slots, one already filled in with a dog facing down. Alice and Bob each
have identical dog, cat cards (each of the dog and cat cards are indistinguishable from cards of
the same value). Note that our use of dog, cat is arbitrary, and could be any other set of two
elements: 0, 1, x, o, etc.

Alice places her cards on the 2 slots in some order, and Bob does the same.

They then spin the table around and reveal all the cards, learning x ∧ y.

If x = 1, Alice places it as dog on top of cat, and if y = 1, Bob places it as dog on top of cat as
well. Otherwise, they flip them. If x = y = 1, then the dog’s will be adjacent. If x ≠ y, the
order will be dog, dog, cat, dog, cat (the cat’s are not adjacent), regardless of which of Alice or
Bob produced x = 0 (or both!).

20

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

This is a toy example! It doesn’t use cryptography at all! Two parties have to sit in front of a table.
This is called card-based cryptography. We will be using more secure primitives.

§1.7 Further Topics

We might cover some other topics:

• Differential Privacy

• Crypto applications in machine learning

• Crypto techniques used in the blockchain2

What else would you like to learn? What else do you want to understand? Do go through the
semester with these in mind! How do I log into Google? How do I send messages to friends?

Feel free to let us know on Ed!

§1.8 Q & A

• Do I need to have a crypto background?

No!

• Why C++

Existing crypto libraries are mostly in C++ and most students have seen C/C++ in either
cs33 or cs300. We did, however, consider implementing everything in Rust!

• Class Participation

Course attendance is expected for all students, since a large portion of the class structure relies
on students answerin questions in class. Even if you don’t actively volunteer, try to think
through the answer on your own! Students may join class via Zoom if they are remote-only,
traveling, or sick.

• What is the difference between CSCI 1515 and CSCI 1510, MATH 1580, or CSCI 1410?

CSCI 1510 is essentially “theoretical cryptography.” It covers formal definitions and construc-
tions and proofs. There is no coding, just proofs.

MATH 1580 considers crypto from the mathematical perspective. They try to understand
some of the computational assumptions we assume from a mathematical standpoint. I.e. why

2One important techniques is Zero-Knowledge proofs, for example.

21

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

is factoring hard to compute, and what is the best algorithm to compute it? In CS, we simply
assume factoring is hard. MATH 1580 is more similar to number theory and group theory.

CSCI 1040 is a cryptography course for students without a computer science or math back-
ground. It is self described as "crypto for poets!"

CSCI 1515, on the other hand, takes a hands on approach to cryptography. This class is
suitable for both students with limited cryptography exposure more interested in cryptography
from a software engineering perspective, as well as students with a cryptography theory
background looking to understand what makes an implementation efficient in practice.

22

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§2 January 27, 2025

§2.1 Encryption Scheme Basics

This lecture we’ll cover encryption schemes. We briefly mentioned what encryption schemes were
last class, we’ll dive into the technical content: how we construct them, assumptions, RSA, ElGamal,
etc.

Fundamentally, an encryption scheme protects message secrecy. If Alice wants to communicate to
Bob, Alice will encrypt a message (plaintext) using some key which gives her a ciphertext. Sending
the ciphertext through Bob using a public channel, Bob can use the key to decrypt the ciphertext
and recover the message. An eavesdropper in the middle will have no idea what message has been
transmitted.

In this case, they are using a shared key, which we called secret-key encryption or symmetric-key
encryption.

A stronger version of private-key encryption is called public-key encryption. Alice and Bob do not
need to agree on a shared secret key beforehand. There is a keypair (pk, sk), a public and private
key.

23

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§2.1.1 Syntax

Definition 2.1 (Symmetric-Key Encryption)
A symmetric-key encryption (SKE) scheme contains 3 algorithms, Π = (Gen,Enc,Dec).

Generation. Generates key k ← Gen.

Encryption. Encrypts message m with key k, c ← Enc(k,m), which we sometimes write as
Enck(m).

Decryption. Decrypts using key k to retrieve message m, m := Dec(k, c), or written as Deck(c).

Note the notation← and := is different. In the case of generation and encryption, the produced
key k or c follows a distribution (is randomly sampled), while we had better want decryption
to be deterministic in producing the message.

In other words, we use ← when the algorithm might involve randomenss and := when the
algorithm is deterministic.

24

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 2.2 (Public-Key Encryption)
A public-key encryption (PKE) scheme Π = (Gen,Enc,Dec) contains the same 3 algorithms,

Generation. Generate keys (pk, sk)← Gen.

Encryption. Use the public key to encrypt, c← Enc(pk,m) or Encpk(m).

Decryption. Use the secret key to decrypt, m := Dec(pk, c) or Decsk(c).

Remark 2.3. Note that all these algorithms are public knowledge. This is known as Kerckhoffs’s
principle.

Intuitively, one key reason is because if the security of our scheme relies on hiding the algorithm, then
if it is leaked we need to construct an entirely new algorithm. However, if the security of our scheme
relies on, for example, a secret key, then we simply need to generate a new key.

Question. If we can construct public-key encryption, why do we even bother with secret-key
encryption? We could just use the (pk, sk) pair for our secret key, and this does the same thing.

1. First of all, public-key encryption is almost always more expensive. Symmetric-key encryption
schemes give us efficiency.

2. Public-key encryption relies on much stronger computational assumptions, whereas symmetric
key encryption are still post-quantum secure.

§2.1.2 Symmetric-Key Encryption Schemes

25

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 2.4 (One-Time Pad)

Secret key is a uniformly randomly sampled n bit string k
$← {0, 1}n.

Encryption. Alice uses the secret key and bitwise-XOR with the plaintext.

secret key k = 0100101

⊕ plaintext m = 1001001

ciphertext c = 1101100

Decryption. Bob uses the secret key and again bitwise-XOR with the ciphertext

secret key k = 0100101

⊕ ciphertext c = 1101100

plaintext c = 1001001

This is widely used in cryptography, called masking or unmasking.

Question. Why is this correct?

An XOR done twice with the same choice bit b is the identity. In other words, k ⊕ (k ⊕m) = m

Question. Why is this secure?

We can think about this as the distribution of c. ∀m ∈ {0, 1}n, the encryption of m is uniform over
{0, 1}n (since k was uniform).

Another way to think about this is that for any two messages m0,m1 ∈ {0, 1}n, Enck(m0) ≡
Enck(m1). That is, the encryptions follow the exact same distribution. In this case, they are both
uniform, but this is not always the case.

26

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Question. Can we reuse k? Should we use the same key again to encrypt another message? Or, it
is possible for the eavesdropper to extract information.

For example, Enck(m) is c := k ⊕m, and Enck(m
′) is c′ := k ⊕m′. If the two messages are the

same, the ciphertexts are the same.

By XOR c and c′, we get

c⊕ c′ = (�k ⊕m)⊕ (�k ⊕m′)

= m⊕m′

This is why this is an one-time pad. This is a bit of an issue, to send an n-bit message, we need to
agree on an n-bit message.

In fact, this is the best that we can do.

Theorem 2.5 (Shannon’s Theorem)
Informally, for perfect (information-theoretic3) security, the key space must be at least as large
as the message space.

|K| ≥ |M|

where K is the key space andM is the message space.

Question. How can we circumvent this issue?

The high level idea is that we weaken our security guarantees a little. Instead of saying that they
have to be exactly the same distribution, we say that they are hard to distinguish for an adversary
with limited computational power. This is how modern cryptography gets around these lower
bounds in classical cryptography. We can make computational assumptions about cryptography.

We can think about computational security,

Definition 2.6 (Computational Security)
We have computational security when two ciphertexts have distribution that cannot be distin-
guished using a polynomial-time algorithm.

Definition 2.7 (Polynomial-Time Algorithm)
A polynomial time algorithm A(x) is one that takes input x of length n, A’s running time is
O(nc) for a constant c.

3That the distributions of ciphertexts are identical, that Enck(m0) ≡ Enck(m1).

27

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 2.8 (NP Problem)
A decision problem is in nondeterministic polynomial-time when its solution can be verified in
polynomial time.

Example 2.9 (Graph 3-Coloring)
Given a graph, does it have a 3-coloring such that no two edges join the same color? For
example,

This can be verified in polynomial time (we can check if such a coloring is a valid 3-coloring),
but it is computed in NP time.

Definition 2.10
An NP-complete problem is a “hardest” problem in NP. Every problem in NP is at least as hard
as an NP-complete problem.

Right now, we assume P ̸= NP. As of right now, there is no realistic algorithm that can solve any
NP problem in polynomial-time.

Even further, we pick some problems not in NP-complete, not in P. We assume they are neither
NP-complete nor in P (we don’t yet have a reduction, but we don’t know if one could exist)
The reasoning behind using these problems is as we have no good cryptoscheme relying solely on
NP-complete problems (we need something weaker).

28

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Going back to our definition of computational security definition 2.6,

Definition (Computational Security)
Let the adversary be computationally bounded (i.e. only a polynomial-time algorithm). Then
∀ probabilistic poly-time algorithm A,

Enck(m0)
c≃ Enck(m1)

Where
c≃ is “computationally indistinguishable”.

What does it mean for distributions to be “computationally indistinguishable”? Let’s say Alice
encrypts multiple messages m0,m1, . . . to Bob and produces c0, c1, Even if Eve can see all
plaintexts mi in the open and ciphertexts ci in the open, between known m0,m1 and randomly
encrypting one of them c← Enck(mb) where b

$← {0, 1}, the adversary cannot determine what the
random choice bit b is. That is, Pr[b = b′] ≤ 1

2 + negligible(λ)4. This is Chosen-Plaintext Attack
(CPA) Security.

Definition 2.11 (Chosen-Plaintext Attack)
In simpler terms, a Chosen-Plaintext Attack (CPA) allows an adversary to request the en-
cryptions of any number of chosen messages with the same key. The adverrsary can see
the ciphertext of each message. Then, the adversary chooses two messages to be encrypted,
and receives the ciphertext of one. The adversary must try to determine which message the
ciphertext corresponds to.

Note: the adversary is allowed to send the same message as many times as it wishes.

4λ is the security parameter, roughly a measure of how secure the protocol is. If it were exactly equal 1
2
, we have

information-theoretic security.

29

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

For a key generated k ← Gen(1λ).

Theoretically, for λ a security parameter and an adversary running in time poly(λ), the adversary
should have distinguishing advantage negligible(λ) where

negligible(λ)≪ 1

λc
∀ constant c.

In practice, we set λ = 128. This means that the best algorithm to break the scheme (e.g. find the
secret key) takes time ∼ 2λ. Currently, this is longer than the age of the universe.

Remark 2.12. Just how big is 2128? Well, see how long 2128 CPU cycles will take.

Let’s assume the CPU spec is 3.8 GHz i.e. 3 · 109 cycles per second. Moreover, note that 2128 ∼ 1040

CPU cycles.

Then doing the math . . .

1040 CPU cycles · 1s

109 CPU cycles
· 1 year
31, 536, 000s

∼ 1022 years

Now let’s be generous and say the age of the universe is 1011 years . . . then we see that it would still
take 1011 times the current age of the universe!

30

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Example 2.13
If the best algorithm is a brute-force search for k, what should our key length be?

It can just be a λ bit string.

Example
What if the best algorithm is no longer a brute-force search, but instead for a key
length l takes ∼

√
2l?

Our key length should be 2λ. Doing the math, we want
√
2l ≡ 2λ, solving for l gives 2λ.

Going back to the original problem of secret-key encryption, how can we use our newfound
cryptographic constructions to improve this?

From a pseudorandom function/permutation (PRF/PRP), we can reuse our secret key by passing it
through the pseudorandom function.

The current practical construction for PRD/PRP is called the block cipher, and the standardized
implementation is AES5

It is a computational assumption6 that the AES construction is secure, and the best attack is
currently a brute-force search (in both classical and quantum computing realms).

§2.1.3 Public-Key Encryption Schemes

Using computational assumptions, we explore some public-key encryption schemes.

RSA Encryption. This is based on factoring/RSA assumption, that factoring large numbers is hard.

ElGamal Encryption. This is based on the discrete logarithm/Diffie-Hellman Assumption, that
finding discrete logs in Zp is hard.

Lattice-Based Encryption. The previous two schemes are not quantum secure. Quantum compu-
tation will break these schemes. Lattice-based encryption schemes are post-quantum secure.
They are associated with the difficulty of finding ‘short’ vectors in lattices7.

5Determined via a competition for such an algorithm in the early 2000s.
6Based on heuristic, not involving any number theory!
7Covered later in class, we focus on the first two now.

31

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Theorem 2.14
(Very informally,) It is impossible to construct PKE from SKE in a black-box way. This is
called “black-box separation”.

We first need to define a bit of number theory background.

Definition 2.15
We denote a | b as a divides b, that is, there is integer c such that b = a · c.

Definition 2.16 (Primes)
An integer p > 1 that only has two divisors: 1 and p

Definition 2.17 (Mod)
a mod N is the remainder of a when divided by N .

a ≡ b (mod N) means when a and b are congruent modulo N . That is, a mod N = b mod N .

Question. How might we compute ab mod N? What is the time complexity? Let a, b,N be n-bit
strings.

Naïvely, we can repeatedly multiply. But this takes b steps (2n).

We can ‘repeatedly square’. For example, we can get to a8 faster by getting a2, squaring to get a4,
and again to get a8. We can take the bitstring of b and determine how to compute this.

Example
If b = 1001012, we take a · a4 · a32 mod N which can be calculated recursively (an example is
given in the first assignment).

The time complexity of this is order O(n) for n-bit a, b,N8.

Definition 2.18
The gcd(a, b) is the greatest common divisor of a, b. If gcd(a, b) = 1, then a, b are coprime.

8Not exactly order n, we should add the complexity of multiplication. However, this should be bounded by N since
we can log at every step.

32

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Question. How do we compute gcd? What is its time complexity?

Example
We use the Euclidean Algorithm. Take gcd(12, 17),

17 mod 12 = 5

12 mod 5 = 2

5 mod 2 = 1

2 mod 1 = 0

or take gcd(12, 18)

18 mod 12 = 6

12 mod 6 = 0

Theorem 2.19 (Bezout’s Theorem, roughly)
If gcd(a,N) = 1, then ∃b such that

a · b ≡ 1 (mod N).

This is to say, a is invertible modulo N . b is its inverse, denoted as a−1.

Question. How do we compute b?

We can use the Extended Euclidean Algorithm!

Example
We write linear equations of a and N that sum to 1, using our previous Euclidean Algorithm.
Take the previous example gcd(12, 17),

17 mod 12 = 5

12 mod 5 = 2

5 mod 2 = 1

2 mod 1 = 0

We write this as

5 = 17− 12 · 1
2 = 12− 5 · 2 = 12 · x+ 17 · y
1 = 5− 2 · 2 = 12 · x′ + 17 · y′

33

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

where we substitute the linear combination of 5 into 5 on line 2, substitute linear combination
of 2 into 2 on line 1, each producing another linear combination of 12, 17.

If gcd(a,N) = 1, we use the Extended Euclidean Algorithm to write 1 = a · x+N · y, then
1 ≡ a · x (mod N).

Definition 2.20 (Group of Units mod N)
We have set

Z×
N := {a | a ∈ [1, N − 1], gcd(a,N) = 1}

which is the group of units modulo N (they are units since they all have an inverse by above).

Definition 2.21 (Euler’s Phi Function)
Euler’s phi (or totient) function, ϕ(N), counts the number of elements in this set. That is,
ϕ(N) = |Z×

N |.

Theorem 2.22 (Euler’s Theorem)
For all a,N where gcd(a,N) = 1, we have that

aϕ(N) ≡ 1 (mod N).

With this, we can start talking about RSA.

§2.1.4 RSA

We first define the RSA assumption.

Definition 2.23 (Factoring Assumption)
Given two n-bit primes p, q, we compute N = p · q. Given N , it’s computationally hard to find
p and q (classically).

34

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 2.24 (RSA Assumption)
Given two n-bit primes, we again compute N = p · q, where ϕ(N) = (p− 1)(q − 1). We choose
an e such that gcd(e, ϕ(N)) = 1 and compute d ≡ e−1 (mod ϕ(N)).

Given N and a random y
$← Z×

N , it’s computationally hard to find x such that xe ≡ y (mod N).

However, given p, q, it’s easy to find d. We know ϕ(N) = (p− 1)(q − 1), so we can compute d
from e by running the Extended Euclidean Algorithm. Then, taking (xe)d ≡ xed ≡ x which
allows us to extract x again.

Encrypting is exactly raising by power d, and decrypting is raising again by power e.

Remaining questions:

• How can we generate primes p, q?

• How can we pick e such that gcd(e, ϕ(N)) = 1?

• What security issues can you see?

We’ll continue next class.

35

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§3 January 29, 2025

§3.1 Basic Number Theory, continued

We recall a couple more definitions.

Definition 3.1
We first define the multiplicative group of integers modulo n as

Z∗
N = {a ∈ [1, N − 1] | gcd(a,N) = 1}

Definition 3.2
We define the Euler’s totient function as

ϕ(N) = |Z∗
N |

Example 3.3
If N = p · q where p, q are prime, then ϕ(N) = (p− 1)(q − 1).

Theorem 3.4 (Euler’s Theorem)
∀a,N where gcd(a,N) = 1, we have that aϕ(N) ≡ 1 mod N .

Corollary 3.5
If

d ≡ e−1 mod ϕ(N)

, then
∀a ∈ Z∗

N , (ad)e ≡ a mod N

.

§3.2 RSA Encryption, continued

Recall: that the RSA encryption algorithm contains 3 components:

Gen(1λ): Generate two n-bit primes p, q. We compute N = p · q and ϕ(N) = (p− 1)(q− 1). Choose
e such that gcd(e, ϕ(N)) = 1. We compute d = e−1 mod ϕ(N). Our public key pk = (N, e),
our secret key is sk = d.

36

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Encpk(m): c = me mod N .

Decsk(c): m = cd mod N .

We have a few remaining questions:

1. How do we generate 2 primes p, q? More specifically, how do we generate two large primes
efficiently?

2. How do we choose such an e?

3. How do we compute d = e−1 mod ϕ(N)?

4. How do we efficiently compute me mod N and cd mod N .

How do we resolve these issues to ensure the Gen step is efficient (polynomial time)?

1. We pick an arbitrary number p and check for primality efficiently (using Miller Rabin, a
probabilistic primality test). We pick random numbers until they are prime. Since primes are
‘pretty dense’ in the integers, this can be done efficiently.

2. Since we’re unsure whether coprime numbers are dense, we can just pick a small prime e.
Guessing, like we did with p, q is also valid, although not strictly necessary.

3. We can compute d using the Extended Euclidean Algorithm.

4. We can repeatedly square (using fast power algorithm).

Question. What happens if we can factor N?

Then we can find p and q and calculate ϕ(N) = (p− 1)(q − 1), and then we can compute d = e−1

mod ϕ(N). Thus, RSA relies crucially on the factoring problem being hard.

Question. The above scheme is known as “plain” RSA. Are there any security issues?

• It relies on factoring being difficult (this is the computational assumption). Post-quantum,
Shor’s Algorithm will break RSA.

• Recall last lecture that CPA (Chosen-Plaintext Attack) security was defined as an adversary
not being able to discern between an encryption of m0 and m1, knowing m0 and m1 in the
clear.

Eve could just encrypt m0 and m1 themselves using public e, and discern which of the
plaintexts the ciphertext corresponds to. For RSA, this is a very concrete attack.

37

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The concrete reason is that the encryption algorithm Enc is deterministic. If you encrypt the
same message twice, it will be the same ciphertext. Since this scheme is deterministic, it fails
CPA security - for example, an adversary can encrypt messages and look for matches. We
really want to be sure that m

$← Z×
N (that it has enough entropy).

Question. In practice, how can RSA be useful with these limitations?

As long as we pick the plaintext which is randomly sampled, security for RSA holds. There is also a
more involved way of using RSA that is CPA-secure, but we will not go in detail of it.

Remark. In practice, we usually set length of p and q to be 1024 bits, and the key length is 2048 bits.

Moreover, note that although exponentiation can be done in polynomial time, it’s still a very expensive
operation. This is why public key encryption is, in general, more expensive than symmetric key
encryption.

§3.3 Intro to Group Theory

Definition 3.6 (Group)
A group is a set G along with a binary operation ◦ with properties:

Closure. ∀g, h ∈ G, g ◦ h ∈ G.

Existence of an identity. ∃e ∈ G such that ∀g ∈ G, e ◦ g = g ◦ e = g.

Existence of inverse. ∀g ∈ G, ∃h ∈ G such that g ◦ h = h ◦ g = e. We denote the inverse of g
as g−1.

Associativity. ∀g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

We say a group is additionally Abelian if it satisfies commutativity

Commutativity. ∀g, h ∈ G, g ◦ h = h ◦ g.

For a finite group, we use |G| to denote its order.

Example 3.7
(Z,+) is an Abelian group.

We can check so: two integers sum to an integer, identity is 0, the inverse of a is −a, addition
is associative and commutative.

38

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

(Z, ·) is not a group. There is no inverse for 0 such the 0 · h = 1.

(Z×
N , ·) is an Abelian group (· is multiplication mod N).

Definition 3.8 (Cyclic Group)
Let G be a group of order m. We denote

⟨g⟩ := {e = g0, g1, g2, . . . , gm−1}.

G is a cyclic group if ∃g ∈ G such that ⟨g⟩ = G. g is called a generator of G.

Example
Z×
p (for prime p) is a cyclic group of order p− 19.

Z×
7 = {30 = 1, 31, 32 = 2, 33 = 6, 34 = 5, 35 = 5}.

Question. How do we find a generator?

For every element, we can continue taking powers until gα = 1 for some α. We hope that α = p− 1
(the order of g is the order of the group), but we know at least α | p− 1.

§3.4 Computational Assumptions

We have a few assumptions we make called the Diffie-Hellman Assumptions, in order of weakest
to strongest10 assumptions.

Let (G, q, g) ← G(1λ) be a cyclic group G or order q (a θ(λ)-bit integer) with generator g. For
integer groups, keys are usually 2048-bits. For elliptic curve groups, keys are usually 256-bits.

Definition 3.9 (Discrete Lgoarithm (DLOG) Assumption)

Let x
$← Zq. We compute h = gx.

Given (G, q, g, h), it’s computationally hard to find the exponent x (classically).

9A proof of this extends beyond the scope of this course, but you are recommended to check out Math 1560 (Number
Theory) or Math 1580 (Cryptography). You can take this on good faith.

10If one can solve DLOG, we can solve CDH. Given CDH, we can solve DDH. This is why CDH is stronger than
DDH, and DDH is stronger than DLOG. It’s not necessarily true the other way around (similar to factoring and
DSA assumptions).

39

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 3.10 (Computational Diffie-Hellman (CDH) Assumption)

x, y
$← Zq, compute h1 = gx, h2 = gy.

Given (G, q, g, h1, h2), it’s computationally hard to find gxy.

Definition 3.11 (Decisional Diffie-Hellman (DDH) Assumption)

x, y, z
$← Zq. Compute h1 = gx, h2 = gy.

Given (G, q, g, h1, h2), it’s computationally hard to distinguish between gxy and gz.

(gx, gy, gxy)
c≃(gx, gy, gz).

§3.5 ElGamal Encryption

The ElGamal encryption scheme involves the following:

Gen(1λ): We generate a group (G, q, g)← G(1λ). We sample x
$← Zq, compute h = gx. Our public

key is pk = (G, q, g, h), secret key sk = x.

Encpk(m): We have m ∈ G. We randomly sample y
$← Zq, which helps prevent our ciphertext from

being deterministic. Our ciphertext is c = ⟨gy, hy ·m⟩. Note that h = gx, so gxy
c≃ gz is a

one-time pad for our message m.

Decsk(c): To decrypt c = ⟨c1, c2⟩, we raise

cx1 = (gy)x = gxy

m =
gxy ·m
gxy

= c2 · (cx1)−1.

Notes about ElGamal:

• Our group can be reused! We can use a public group that is fixed. In fact, there are popular
groups out there used in practice. Some of these are Elliptic Curve groups which are much
more efficient than integer groups. You don’t need to use the details, yet you can use it! You
can use any group, so long as the group satisfies the DDH assumption.

• Similar to RSA, this is breakable post-quantum. Given Shor’s Algorithm, we can break
discrete log.

40

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§3.6 Secure Key Exchange

Using DDH, we can construct something very important, secure key exchange.

Definition 3.12 (Secure Key Exchange)
Alice and Bob sends messages back and forth, and at the end of the protocol, can agree on a
shared key.

An eavesdropper looking at said communications cannot figure out what shared key they came
up with.

Theorem 3.13
Informally, It’s impossible to construct secure key exchange from secret-key encryption in a
black-box way.

Question. How do we build a key exchange from public-key encryption?

Bob generates a keypair (pk, sk). Alice generates a shared key k
$← {0, 1}λ, and sends Encpk(k) to

Bob.

Using Diffie-Hellman, it’s very easy. We have group (G, q, g)← G(1λ). Alice samples x
$← Zq and

sends gx. Bob also samples y
$← Zq and sends gy. Both Alice and Bob compute gxy = (gx)y =

(gy)x.

41

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

What happens in practice is that parties run Diffie-Hellman key exchange to agree on a shared key.
Using that shared key, they run symmetric-key encryption. This gives us efficiency. Additionally,
private-key encryptions don’t rely on heavy assumptions on the security of protocols (such as the
DDH, RSA assumptions).

§3.7 Prime Order Subgroups

The Decisional Diffie-Hellman assumption (DDH) does not hold for prime p in cyclic group Z×
p with

order p− 1. We use the prime order subgroup of Z×
p .

Definition 3.14 (Subgroup)
A subgroup is some subset of a group that is also a group itself.

Definition 3.15 (Safe Prime)
A prime p is a safe prime if p = 2q + 1, where q is prime. These are also known as Sophie
Germain primes.

Where p is a safe prime, the DDH assumption holds in group G := {x2 mod p | x ∈ Z×
p }, and G is

a provably a subgroup of Z×
p with order q.

§3.8 Message Integrity

Alice sends a message to Bob, how does Bob ensure that the message came from Alice?

We can build up another line of protocols to ensure message integrity. It’s similar to encryption,
but the parties run 2 algorithms: Authenticate and Verify.

Using a message m, Alice can generate a tag or signature, and Bob can verify (m, t) is either valid
or invalid.

42

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Our adversary has been upgraded to an Eve who can now tamper with messages.

Just like we have symmetric-key and public-key encryption, we also have symmetric-key and
public-key authentication and verification.

Using a shared key k, Alice can authenticate m using k to get a tag k. Similarly, Bob can verify
whether (m, t) is valid using k. This is called a Message Authentication Code.

Using a public key vk (verification key) and private key sk (secret/signing key), Alice can sign a
message m using signing key sk to get a signature σ. Bob verifies (m,σ) is valid using vk. This is
called a Digital Signature.

43

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Question. Can an adversary tamper with a signed message if the adversary can see the message
and signature? Tune in next week to find out...

§3.8.1 Syntax

The following is the syntax we use for MACs and digital signatures.

A message authentication code (MAC) scheme consists of Π = (Gen,Mac,Verify).

Generation. k ← Gen(1λ).

Authentication. t← Mack(m).

Verification 0/1 := Verifyk(m, t).

A digital signature scheme consists of Π = (Gen, Sign,Verify).

Generation. (sk, vk)← Gen(1λ).

Authentication. σ ← Signsk(m).

Verification 0/1 := Verifyvk(m,σ).

44

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§4 February 3, 2025

§4.1 Message Integrity

Last lecture, we touched upon methods of authenticating a message. The symmetric-key version is
called a MAC (message authentication code), the public-key version is called a digital signature.
Let’s review what we covered last time.

§4.1.1 Message Authentication Code

To authenticate a message, Alice will use the private key k to tag a message m with a tag t. Bob
will verify that (m, t) is valid with key k.

§4.1.2 Digital Signature

Similarly we have the public-key version. Alice has a secret key sk to sign message m with signature
σ. Bob (or anyone) can verify with the public key pk that (m,σ) is a valid signature.

45

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§4.1.3 Syntax

Recall the syntax of MAC and digital signatures (see section 3.8.1).

A message authentication code (MAC) scheme consists of Π = (Gen,Mac,Verify).

Generation. k ← Gen(1λ).

Authentication. t← Mack(m).

Verification 0/1 := Verifyk(m, t).

A digital signature scheme consists of Π = (Gen, Sign,Verify).

Generation. (sk, vk)← Gen(1λ).

Authentication. σ ← Signsk(m).

Verification 0/1 := Verifyvk(m,σ).

§4.1.4 Chosen-Message Attack

Similar to chosen-plaintext attack from encryption, we have chosen-message attack security. An
adversary chooses a number of messages to generate signatures or tags for. After that, the adversary
will try to generate another valid pair of message and tag. We want to make sure that generating a
new pair of message and tag is extremely hard (negligible probability of success).

46

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Question. Do the MAC and signature algorithms need to be randomized to be CMA secure?

No! Unlike CPA security, we don’t need these algorithms to be randomized to be CMA secure. It is
ok for these algorithms to be deterministic, since it is still difficult for an adversary to produce a
new message-signature pair.

47

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§4.2 RSA Signatures

Our RSA signatures algorithm works very similarly to RSA encryption.

We generate two n-bit primes p, q. Compute N := p · q and ϕ(N) = (p− 1)(q − 1). Again choose
e with gcd(e, ϕ(N)) = 1 and invert d = e−1 mod ϕ(N). Given N and a random y

$← Z×
N , it’s

computationally hard to find x such that xe ≡ y mod N .

Similarly, sk := d and vk := (N, e). To sign, we compute

Signsk(m) := md mod N.

To verify, we compute
Verifyvk(m,σ) := σe ?≡ m mod N.

Question. Are there any security issues with RSA as we have constructed it so far?

Yes, there are several attacks that can be leveraged. A simple on is to sample some σ∗ ∈ Z∗
N , and

then compute m∗ := (σ∗)e.

Attacks can be more targeted. If Eve knows many messages and signatures, she can compute
another pair of valid message and keys. If we have messages

m0, σ0 = md
0 mod N

m1, σ1 = md
0 mod N

We can compute m∗ := m0 ·m1 and σ∗ := σ0 · σ1 = (m0 ·m1)
d mod N .

We can do linear combinations of messages, as well as raising messages to arbitrary exponents, and
we can get other messages with valid signatures.

There is an easy solution, however. We can hash our message m before we sign, like so

Signsk(m) := H(m)d mod N

Verifyvk(m,σ) := σe ?≡ H(m) mod N

where H is a hash function11. This is a commonly known technique called ‘hash-and-sign’.

§4.2.1 Other Signature Schemes

There are also other signature schemes that rely on other hardness assumptions.

• RSA signatures rely on the RSA assumption.
11A hash function is, briefly, a function that produces some random output that is hard to compute the inverse of.

48

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

• Schnorr/DSA signatures rely on the discrete log assumption.

• Lattice-based encryption schemes are post-quantum secure and rely on the hardness of certain
lattice problems.

§4.3 A Summary So Far

To summarize, here’s all we’ve covered so far:

Symmetric-Key Public-Key

Message Secrecy
Primitive: SKE
Construction: Block Cipher

Primitive: PKE
Constructions: RSA/ElGamal

Message Integrity
Primitive: MAC
Constructions: CBC-MAC/HMAC

Primitive: Signature
Constructions: RSA/DSA

Secrecy & Integrity
Primitive: AE
Construction: Encrypt-then-MAC

Key Exchange Construction: Diffie-Hellman

Important Tool
Primitive: Hash function
Construction: SHA

§4.4 Authenticated Encryption

Generally, Alice and Bob will first perform a Diffie-Hellman key exchange, then use that shared key
to conduct Symmetric-Key Encryption.

49

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In reality, we want to achieve both message secrecy and integrity at the same time. For this, we can
introduce Authenticated Encryption.

Our security definition is that our adversary can see the encryptions of many messages m0,m1,m2.
We want CCA security: that an adversary given previous ciphertexts and their decryptions cannot
distinguish between the encryptions of a fresh pair of messages m0 and m1. Additionally, we want
the property of unforgeability, that our adversary cannot generate a c∗ that is a valid encryption,
such that Deck(c

∗) ̸= mi for any i.

Definition 4.1 (Chosen Ciphertext Attack)
An adversary is allowed to query any number of messages, and receives their corresponding
ciphertexts. The adversary can also request decryptions from a decryption oracle for any
ciphertext, and will see the resulting decryption.

Definition 4.2 (Unforgeability)
An adversary can query any message. They are unable to create a new message that has not
been queried before, and which can be authenticated.

Now that we have two new primitives, we can construct Authenticated Encryption schemes.

50

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Remark 4.3. This section describes three different approaches to AE: Encrypt-and-MAC, Encrypt-
then-MAC, and MAC-then-Encrypt. In practice, only Encrypt-then-MAC satisfies CCA security and
unforgeability. The other approaches are provided as counterexamples.

§4.4.1 Encrypt-and-MAC?

Given a CPA-secure SKE scheme Π1(Gen1,Enc1,Dec1) and a CMA-secure MAC scheme Π2 =
(Gen2,Mac2,Verify2).

We construct an AE scheme Π = (Gen,Enc,Dec) by composing encryption and MAC. We encrypt
the plaintext and also compute the MAC the plaintext.

Gen(1λ): k1 := Gen1(1
λ), k2 := Gen2(1

λ), output (k1, k2).

Enc(m): To encrypt, we first encrypt ciphertext c1 := Enc1(k1,m) and sign message (in plaintext)
t2 := Mac2(k2,m) and output (c1, t2).

Dec(m): We have ciphertext c = (c1, t2). Our message is m := Dec1(k1, c1), and our verification bit
b := Verify1(k2, (m, t2)). If b = 1, output m, otherwise we output ⊥.

Question. Is this scheme secure? Assuming the CPA-secure SKE scheme and CMA-secure MAC
scheme, does this give us both CPA-security and unforgeability?

MAC gives you unforgeability—but it doesn’t even try to hide the message at all. It’s possible that
the MAC scheme reveals the message in the clear. For example, we might have a MAC scheme that
includes the message in the signature in the clear (which is still secure)!

Since MAC doesn’t try to hide the message. If our MAC reveals something about our message, our
composed scheme Π doesn’t give us CPA-security. You might still be able to infer something about
the message.

We try something else. . .

51

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§4.4.2 MAC-then-Encrypt?

Similarly, we can also MAC first, encrypt the entire ciphertext and tag concatenated.

Gen(1λ): k1 := Gen1(1
λ), k2 := Gen2(1

λ), output (k1, k2).

Enc(m): To encrypt, we first sign message (in plaintext) t2 := Mac2(k2,m) and then encrypt
ciphertext and tag c1 := Enc1(k1,m||t2) and output c1.

Dec(m): We have ciphertext c1. Our message is m||t2 := Dec1(k1, c1), and our verification bit
b := Verify1(k2, (m, t2)). If b = 1, output m, otherwise we output ⊥.

Question. Is this secure?

This doesn’t satisfy a stronger security definition called Chosen Ciphertext Attack (CCA) security.
We might be able to forge ciphertexts that decrypt to valid message and tags.

§4.4.3 Chosen Ciphertext Attack Security

On top of CMA security, the adversary can now request Alice to decrypt ciphertexts c0, c1,

52

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We can prove that MAC-then-Encrypt is not CCA secure.

§4.4.4 Encrypt-then-MAC

We encrypt first, then we MAC on the ciphertext.

Gen(1λ): k1 := Gen1(1
λ), k2 := Gen2(1

λ), output (k1, k2).

Enc(m): To encrypt, we first encrypt ciphertext c1 := Enc1(k1,m) and sign message (in ciphertext)
t2 := Mac2(k2, c1) and output (c1, t2).

Dec(m): We have ciphertext c = (c1, t2). Our message is m := Dec1(k1, c1), and our verification bit
b := Verify1(k2, (c1, t2)). If b = 1, output m, otherwise we output ⊥.

53

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

You can prove that Encrypt-then-MAC schemes are CPA-secure and unforgeable. In addition,
Encrypt-then-MAC is CCA secure, since our decryption oracle will not decrypt if the ciphertext
cannot be verified, meaning only valid ciphertext-tag pairs can be passed.

The moral of this is that you should always use Encrypt-then-MAC.

§4.5 Hash Function

A hash function is a public function
H : 0, 1∗ → 0, 1n

where n is order Θ(λ).

We want our hash function to be collision-resistant. That is, it’s computationally hard to find
x, y ∈ {0, 1}∗ such that x ̸= y yet H(x) = H(y) (which is called a collision).

More to come next class!

54

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§5 February 05, 2025

§5.1 Hash Function, continued

How might one find a collision for function H : {0, 1}∗ → {0, 1}n. We can try H(x1), H(x2), . . . ,H(xq).

If H(x1) outputs a random value, 0, 1n, what is the probability of finding a collision?

If q = 2n + 1, our probability is exactly 1 (by pigeon-hole). If q = 2, our probability is 1
2λ

(we have
to get it right on the first try). What q do we need for a ‘reasonable’ probability?

Remark. This is related to the birthday problem. If there are q students in a class, assume each
student’s birthday is a random day yi

$← [365]. What is the probability of a collision? q = 366 gives 1,
q = 23 gives around 50%, and q = 70 gives roughly 99.9%.

We can apply this trick to our hash function. If yi
$← [N], then q = N + 1 gives us 100%, but q =

√
N

gives 50% probability.

Knowing this, we want n = 2λ (output length of hash function). If λ = 128, we want n to be around
256.

§5.2 Collision-Resistant Hash Function (CRHF)

Recall that we defined a hash function to be a public and deterministic function for which it
is computationally hard to find a collision. That is, finding two distinct strings x, y such that
H(x) = H(y) is computationally difficult.

For the hash function, the input domain is arbitrary-length string, and the output is a fixed-length
string - 256 bits. The security guarantee is Collision-Resistant Hash Function(CRHF).

55

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§5.2.1 Random Oracle Model

Another way to model a hash function is the Random Oracle Model. We think of our hash function
to be an oracle (in the sky) that can only take input and a random output (and if you give it the
same input twice, the same output).

There are proofs that state that no hash functions can be a random oracle. There are schemes that
can be secure in the random oracle model, but are not using hash functions12.

In reality, hash functions are about as good as13 random oracles. Thinking of our hash functions as
random oracles gives us a good intuitive understanding of how hash functions can be used in our
schemes.

In this model, the best thing that an attacker can do is to try inputs and query for outputs.

If you are given an arbitrary output, it’s extremely hard to find its input. But it is not the case
for CRHF, since CRHF only assumes you can not find a collision, thus this model is tronger than
CRHF.

12Some constructions don’t rely on this model.
13But can never be. . .

56

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§5.2.2 Constructions for Hash Function

MD5. Output length 128-bit. Best known attack is in 216. A collision was found in 2004.

And we also have Secure Hash Functions (SHA), founded by NIST.

SHA-0. Standardized in 1993. Output length is 160-bit. Best known attack is in 239.

SHA-1. Standardized in 1995. Output length is 160-bit. Best known attack is in 263, and a collision
was found in 2017.

SHA-2. Standardized in 2001. Output length of 224, 256, 284, 512-bit. The most commonly used
is SHA-256.

SHA-3. There was a competition from 2007-2012 for new hash functions. SHA-3 was released in
2015, and has output length 224, 256, 2384, 512-bit. This is completely different from SHA-2.

Remark. The folklore is that during a session at a cryptography conference, a mathematician, Xiaoyun
Wang, presented slide-after-slide of attacks on MD5 and SHA-0, astounding the audience.

§5.2.3 Applications

HMAC. We can use a hash function to conduct a MAC. Computing a tag involves computing the
hash function on the key appended to the message (k||m). It is computationally difficult to
find another k||m′ that produces the same hash. This is a scheme that looks like

Mack(m) = H(k||m).

However, an adversary could potentially attach some additional s to m to produce m′ = m||s
such that they can easily compute tag′ = H(tag||s). This is due to the Merkle-Damgård
construction of SHA-2, which associatively tags blocks of the message one-by-one.

57

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Therefore, in practice, we use a nested MAC like

Mack(m) = H(k||H(k||m))

and just to be sure (that we’re not reusing the key), we produce k1, k2 as such

HMACk(m) = H(k1||H(k2||m))

such that k1 = k ⊕ opad and k2 = k ⊕ ipad, some one-time pads.

Hash-and-Sign. There are some other applications of a hash function. We’ve seen before with RSA
that we want to Hash-and-Sign, removing any homomorphism that an adversary could exploit.
Additionally, this allows us to sign larger messages since they are constant size after hashing.

Password Authentication. Another application is password authentication. Instead of storing
plaintext passwords on servers, websites can store a hash of the password instead. This means
that the passwords are not compromised even if the server is compromised.

Deduplicate Files. We can also use hash functions to deduplicate files. We can hash two files to
produce identifiers h1 and h2. If h1 ̸= h2, this implies D1 ̸= D2. If h1 = h2, it almost always14

implies that D1 = D2.

HKDF (Key Derivation Function). We can derive more keys from a shared key, essentially using
a hash function as a pseudorandom generator (PRG).

For example, if there is gab shared key, we can do

HMAC(gab, salt)

Using a random seed, and concatenating a public deterministic salt G, we can generate a
random15 string.

14If they are not equal, we’ve found a collision for our hash function, which is extremely unlikely.
15Computationally random, because if our computational power were to be unbounded, we can try all strings.

58

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Pseudorandom Generator (PRG). Given a hash function H, we can generate a PRG easily for
any length string by generating

seed
$← {0, 1}λ −→H(seed||00 · · · 00)

H(seed||00 · · · 01)
H(seed||00 · · · 10)

...

We can take a bit of randomness (like the way we move our mouse, type keyboard, system
properties) and generate our seed.

Fast Membership Proof (Merkle Tree). Using hash functions, we can generate Merkle Trees to
prove membership. In blockchains, this is equivalent to checking if a transaction occurred.

SKE Scheme? Could we use this to encrypt? If we have a secret key k
$← {0, 1}λ, can we just

encrypt by
Enck(m) = H(k||m)

Well, we can’t decrypt for one without having unbounded computational power. If our
plaintext m comes from a small set, like {0, . . . , 10}, we could decrypt properly. However, this
is not CPA-secure, since the adversary could just query for all the messages.

Remark 5.1. In general, all deterministic encryption schemes are not CPA-secure.

§5.3 Putting it Together: Secure Communication

This is essentially what we want to do in the second project.

We use Diffie-Hellman Key Exchange between Alice and Bob to get shared gab. Hashing the shared
key using an HKDF, we can get shared key k = (k1, k2) (one for AES encryption, one for HMAC).
Then, they perform authenticated encryption, namely Encrypt-then-MAC.

Question. Are there any issues with this scheme?

59

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

An Eve could pretend to be Alice to Bob and Bob to Alice, fudging up their shared keys. This is
called a Man-in-the-Middle attack.

§5.3.1 Diffie-Hellman Ratchet

What if a secret key gets leaked, or cracked? One simple way to fix this is to perform a Diffie-Hellman
key exchange on every message. However, this incurs additionall communications costs.

Here’s another idea: with every new message (when the direction of communications shifts), the
party sending the message sends a new Diffie-Hellman public key for themselves. For example, if
Bob is sending a message to Alice and he knows Alice’s public key ga1 and his previous secret was
b1 (hence shared ga1b1), Bob will generate new key b2, g

b2 and encrypt using ga1b2 , sending gb2 as
public to Alice. Alice can recompute the shared key before decrypting.

This is the protocol used in the Signal messaging app, and is what you will implement for Project
1.

Question. What if k1 is leaked?

We might have leaked one key, but the other keys are still computationally hard to compute.
k1 = ga1b1 is known, but it’s equivalent to DDH to compute ga1b2 or other keys.

Question. What if b1 is leaked?

We can compute key k1 = ga1b1 and k2 = ga2b1 , but no further keys are leaked, and the next round
of communications (after Bob refreshes his private key b2) is still secure.

60

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§5.4 Block Cipher

To summarize, here’s what we’ve seen so far (this table should be familiar):

Symmetric-Key Public-Key

Message Secrecy
Primitive: SKE
Construction: Block Cipher

Primitive: PKE
Constructions: RSA/ElGamal

Message Integrity
Primitive: MAC
Constructions: CBC-MAC/HMAC

Primitive: Signature
Constructions: RSA/DSA

Secrecy & Integrity
Primitive: AE
Construction: Encrypt-then-MAC

Key Exchange Construction: Diffie-Hellman

Important Tool
Primitive: Hash function
Construction: SHA

The only thing we haven’t seen thus far is a block cipher. We first start with the definitions.

We saw earlier that a Pseudorandom Generator (PRG) produces a string that looks random. We
also have Pseudorandom Functions (PRF), which are ‘random-looking’ functions.

§5.4.1 Pseudorandom Function (PRF), continued

A block cipher, at a very high level, is a pseudo random function.

Recall last time that we talked about pseudorandom generators (PRG), which takes a seed and
expands it into a long string of pseudorandom bits. This “random-looking” string is computationally
indistinguishable from a truly random string.

A pseudorandom function (PRF) is a “random-looking” function that takes a key and an input
and produces an output. This function is computationally indistinguishable from a truly random
function.

More formally, our pseudorandom function F is a keyed function16 F : {0, 1}λ × {0, 1}n → {0, 1}m,
F will take key k and input x to produce output y, F (k, x) = y.

Without knowing our key k, Fk is computationally indistinguishable from some random f
$← {F |

F{0, 1}n → {0, 1}m}.

16In deterministic polynomial-time.

61

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We have 2λ possible Fk’s, and we have (2m)2
n possible functions f . A computationally unbounded

adversary could try all possible functions and distinguish our function, since Fk lives in a subset of
the space of f . However, in reality, we can assume that Fk is computationally indistinguishable
from any generic function.

§5.4.2 Pseudorandom Permutation (PRP)

A further assumption is that our function is a bijection. Fk is a keyed function from Fk : {0, 1}n →
{0, 1}n. We still have 2λ possible Fk’s since there are 2λ

62

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Question. Again, how many possible f ’s are there?

Our first string has 2n choices to map to, our second choice has 2n − 1, so there are

(2n)(2n − 1)(2n − 2) · · · 1 = 2n!

Still, this is a much larger number than 2λ, so we still make a computational assumption that our
keyed function Fk is still computationally indistinguishable from a random function f .

63

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§6 February 10, 2025

§6.1 Recap

Last lecture, we introduced Pseudorandom Functions (PRFs) and Pseudorandom Permutations
(PRPs). We also introduced the concept of a block cipher, which is a special form of a PRP. Refer
to last lecture’s notes for a refresher.

§6.2 History of AES and DES

AES (Advanced Encryption Standard) was standardized in 2001 by NIST, and is a block cipher
with a block length of 128 bits and key lengths of 128, 192, and 256 bits. Its predecessor, DES, had
a block length of 64 bits and a key length of 56 bits - the best attack on DES is still a brute force
attack.

§6.3 Block Ciphers

Looking back on section 4.3, the last outstanding primitive was the block cipher. We saw this last
lecture, we’ll continue discussing the block cipher.

Recall that we had seen pseudorandom functions which are keyed functions that are computationally
indistinguishable from all random functions from {0, 1}n → {0, 1}m. A stronger form of pseudoran-
dom functions are pseudorandom permutations: a keyed bijective map between {0, 1}n → {0, 1}n
that is computational indistinguishable from pseudorandom permutations.

Block ciphers are a special form of pseudorandom permutation. It is a keyed function

F : {0, 1}λ × {0, 1}n → {0, 1}n

where λ is the key length and n is the block length. The practical construction of which is AES,
which takes blocks of n = 128 and key length λ = 128, 192, 256 as choices.

§6.3.1 Modes of Operation

Electronic Code Book (ECB) Mode: We will run our block cipher on each block of our message
individually. However, this is not CPA secure, since encryptions are deterministic. We need to ‘seed’
our encryption with some random value.

In summary: not CPA secure.

64

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Cipher Block Chaining (CBC) Mode: Instead of running on our block cipher on each block
individually, every block will get an additional initialization vector IV, which is XORed onto each
message before running the block cipher.

We waved our hand over the fact that this is CPA secure—but it relies on the initialization vector
being random.

What if our IV is not randomly sampled? Consider an IV that is different but not randomly sampled.
For example, the IV is 0 · · · 00 for the first message, 0 · · · 01 for the second message, and so on. Do
we still have security?

Unfortunately not. Say m1 is XORed onto 0 · · · 01, an adversary under CPA can choose plaintext
that is m1 with its last bit flipped, such that v1 is manipulated and the block cipher is again
deterministic.

It is crucial that IV is randomly selected, and that the next IVs for future blocks (of the same
message) are also pseudorandom (that are the previous ciphertext, which is okay).

Can we parallelize the computation? No, since we need the previous ciphertext to XOR onto the
next block. This is a downside of CBC mode.

In summary: CPA secure, but non-parallel.

Chained Cipher Block Chaining (Chained-CBC) Mode: There is a mode of operation of
CBC that feeds the last cipher block as the new IV for the next message.

65

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Similar to the case earlier, an adversary here can select a next message based on their knowledge of
the previous ciphertext and hence the upcoming IV.

This makes chained-CBC very subtly different than CBC. If we squint our eyes enough, it just
looks like sending a single message using CBC mode. The key difference is that between rounds of
communication m and m′, an adversary could influence m′ given the knowledge of the previous
round.

Remark. Another note that this is very subtle! To the extent that when Signal was being developed,
the course staff initially wrote the solution using Chained-CBC mode. This highlights the difficulty in
creating real-world cryptographic systems!

In summary: not CPA secure.

Counter (CTR) Mode: Instead of chaining each successive IV from the previous block ciphertexts,
we’ll encrypt only the IV

$← {0, 1}λ, and XOR the encrypted Fk(IV+ i) to mask mi, like a one-time
pad.

Another way to think about the CTR mode is that we’re using Fk and a random IV to generate a
long enough one-time pad to pad the entire message.

How do we decrypt? Since we know the first IV, we can compute the one-time pads Fk(IV + i) and
XOR with mis. This scheme is valid.

Is this CPA secure? The XOR after Fk might throw you off and cast doubt in your mind. However,
this mode of operation is CPA-secure. Even if we know IV, IV + 1, IV + 2, · · · , we can’t figure out
the output of Fk that becomes our one-time pad (to do so constradicts the CPA security of our
block cipher). The CPA security of each Fk being pseudorandom guarantees the CPA security of
this scheme.

What about a “stateful CTR mode” which just increments IV every successive time? Instead of
sending a new IV for the next message, we’ll just increment the IV from before. Similar to Chained-
CBC mode, the adversary will know the IV that is going into the next message. However, this

66

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

doesn’t really help the adversary. They’ve never seen those encrypted IV values before, and hence
cannot modify the message given this information.

This is a distinction from last time, where the IV was XORed onto the message directly, which could
be tampered with by an adversary who knows the IV.

What if IV is not randomly sampled? Nothing really breaks down, unlike the previous case. We
just want to make sure that two IVs are not reused and don’t collide. If IVs collide, two blocks will
have the same one-time pad, which is potentially a problem. This doesn’t prevent us from using
0 · · · 00, 0 · · · 01, 0 · · · 10, . . . as our IV values at all. In practice, however, they are still randomly
sampled to prevent collisions.

Can we parallelize this? Yes, we can compute Fk(IV + i) in parallel and XOR onto each block.
Similar for encryption and decryption.

Can we construct a PRG from a PRF? Using a seed (IV, k), we can generate an nλ bit string

G(k||IV) = Fk(IV)||Fk(IV + 1)||Fk(IV + 2)|| · · ·

In fact, we can get rid of IV entirely and start at 0,

G(k) = Fk(0)||Fk(1)||Fk(2)|| · · ·

Counter mode essentially uses this PRG with private k to generate a long one-time pad which is
used to pad the message. Another note is that in this mode, we don’t even require a pseudorandom
permutation, since we don’t need to invert the function at any point.

In summary: CPA secure, parallel.

Output Feedback (OFB) Mode: This is a mix of CBC and CTR modes. Successive one-time
pad blocks are fed into the next Fk as IV, and they are XORed with the message after encryption.

We have the same questions. How do we decrypt? Is this CPA secure? Is a “stateful” version of
OFB secure? Can we use this to construct a PRG?

67

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We can decrypt similarly: we decrypt the first block, get the IV for the next block and continue on.
All security is guaranteed by the same reasoning as in counter mode: we know IV but still cannot
compute Fk(IV). Similar to counter mode, this is another form of PRG (which chains successive
blocks instead of using IVs in series) that generates a long one-time pad. Again, our IV doesn’t
need to be randomly sampled, but it should not collide with previous IV values.

A difference to counter mode is that we cannot parallelize this scheme. However, in both CTR
and OFB modes, we can precompute the entire one-time pad in both encryption and decryption to
happen in the offline phase. The online phase (when parties are communicating) is limited to cheap
XOR operations.

Question. We’ve listed a lot of benefits to counter mode or output feedback mode. Why do people
use CBC mode at all?

We’ve seen how things can go wrong catastrophically17. This is more true for counter mode
than CBC mode. If our IV is reused in counter mode, our entire one-time pad has been exposed
previously18. However, if our IV is reused in CBC mode, the worst that could happen is something
akin to ECB mode, and no messages are compromised.

At the end of the day, engineers are quite oblivious to cryptographic schemes ! Libraries only specify
for some key and some IV, so it is exceedingly easy to screw up your cryptograhic scheme by
reusing IVs, etc. CBC mode is simply more foolproof and incurs better outcomes in case it is used
incorrectly19.

17We nearly made mistakes in this course!
18XORing our ciphertexts will give mXORm′.
19However, if Peihan were to implement a block cipher scheme herself, would opt for counter mode.

68

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§7 February 12, 2025

§7.0.1 CBC-MAC

We can use block ciphers to construct a MAC scheme. Splitting up our message into blocks, we
feed blocks into Fk and chain to next blocks. In the end, the final cipher output is our tag.

How do we verify? We can just Mac the message again and check that the tag matches. If Fk is
invertible, we can also go the other way.

Is this CMA secure?

• Fixed-length messages of length l · n? Yes, since we can only query for fixed-length messages,
this gives us no additional information.

• Arbitrary-length messages? This is where problems arise—the adversary could first query for
a message of 1 block, then 2 blocks, then 3 blocks, etc. By combining this information, they
could produce new valid signatures.

A concrete attack is an adversary querying for Mac(m) to produce tag, then querying for
Mac(tag) = Mac(m||0) = tag′ which allows the adversary to forge a new message.

Remark. Our constructions of authenticated encryption calls for an encryption scheme and MAC
scheme. It’s crucial that the two schemes have different keys. Using the same key k for both encryption
and MAC can cuase issues (information from one could reveal something about the other).

We have a fix for the CMA-vulnerability in arbitrary-length messages:

69

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§7.0.2 Encrypt-last-block CBC-MAC (ECBC-MAC)

The vulnerability earlier was due to our encryption being associative, so to speak.

We can fix this is to use a different key for the last block:

We could also attach length of messages to the first block, or other techniques.

The nuance in CBC-MAC means that realistically, we almost always use HMAC.

Question 7.1. For CBC-MAC, if we randomly sample the IV and include it in the tag, will this be
CMA secure?

No! Consider if the adversary queries for the tag of m := m1||m2||m3 and receive the tag
t := (IV, tag).

The adversary can generate a new valid tag for m∗ := m1 ⊕ IV||m2||m3 and t∗ := (0n, tag).

70

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§7.1 Putting it Together

Looking back at section 4.3, we’ve collected everything we need so far for secure communication.

For Alice and Bob to communicate, they first exchange keys using a Diffie-Hellman key exchange,
then perform authenticated encryption.

71

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

However, this still does not mitigate against a man-in-the-middle attack. Thus, before exchanging
keys, Alice and Bob should publish verification keys (to a digital signature scheme, see section 4.1.2).
Using this digital signature, Alice and Bob will each sign their Diffie-Hellman public values ga, gb

using their signing key, which will be attached to the message. They can respectively verify that
these values came from each other, and not some Eve in the middle.

We will now go over the topics needed for the next project, Auth. Namely,

• One-Sided Secure Authentication

• Password-Based Authentication

• Two-Factor Authentication (2FA)

• Putting it All Together: Secure Authentication

• Public Key Infrastructure (PKI)

Recall that we had a way for Alice and Bob to communicate securely, first exchanging a shared
Diffie-Hellman key and then performing AES encryption.

72

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

However, this is prone to a man-in-the-middle attack. One way to solve this is for parties to sign
their own Diffie-Hellman public values before sending, and then verify the other party’s public value
by using their public verification key.

73

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Is this now secure against an adversary in the middle? Yes, because the public values are guaranteed
(via our digital signature scheme) by Alice and Bob’s signing key. The man in the middle does not
have access to the signing key, and cannot sign a phony public value.

However, how do we know the verification keys really belong to who we think they belong to? This
is the problem of authentication. We are sort of in a chicken and egg problem...

§7.2 One-Sided Secure Authentication

In some circumstances, it’s more difficult for a client to communicate their verification key to a
server than it is for a server to do so. A server might publish their verification key, and trust that
all clients are not compromised.

74

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

What could an adversary potentially do? The adversary could not pretend to be the server since they
have no access to the server’s signing key. The adversary can pretend to be the client and talk to
the server. The adversary could forward all messages sent to the server, and can also communicate
gb, σb back to the client (it’s a valid signature since it has not been modified).

At the end of this protocol, the client has Diffie-Hellman private gab and the adversary and server
will have geb (where ge, e is a Diffie-Hellman keypair the adversary provided to the client). Whatever
the client sends to the server cannot be decrypted by the adversary, since it is encrypted with gab,
however, the server’s communications could be decrypted by the adversary.

This can be easily circumvented by requiring the server and user complete their handshake—the server
could request a hash or encryption of the shared secret, and realize that they are communicating to
an adversary when this cannot be forged by the man-in-the-middle.

§7.3 Password-Based Authentication

Sometimes, you also want to authenticate with a server using a password. The naïve implementation
is that a user with an ID sends a hash of the password h = H(password) to the server. The server
stores (ID, h).

75

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In this case, an adversary could launch an Online Dictionary Attack and try a lot of passwords
with the server.

If the server were to be compromised, and its database compromised, the adversary can conduct an
Offline Dictionary Attack on the database. Additionally, the adversary can precompute all hashes
and check against the database.

How can we prevent this?

§7.3.1 Salting

One way of ensuring that the hashing is non-deterministic is for servers to generate a salt
$← {0, 1}s

76

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

and send it to the user. The user will hash H(password||salt) and send that to the server. The
server stores a database of (ID, salt, h).

When logging in, the user first sends their ID to the server, the server will send the salt back, the
user hashes their password, and the hash is sent to the server for verification.

Does this allow the user to use a weak password? Nope! The adversary can always brute-force the
password.

To further solve these problems, we can use peppering. We send the salt to the user and the user
computes hash h = H(password||salt). Then, we pick a random pepper and hash h∗ = H(h||pepper)
and stores h∗. Now, even if the server is compromised, there is no way to find the preimage of h∗,
so adversaries knowing h∗ will still have to do try all 2p possible peppers for each dictionary guess.
We still can’t log into the server since the server hashes our login hash again.

Additionally, one strategy to make it even harder for an adversary is to make hashing more
difficult (time-consuming). For example, we can compose SHA256 in certain ways20. There are also
memory-hard hash functions, like scrypt.

Even with all this, is it still safe to use a weak password? Nope! A dictionary attack is still possible,
and with weak passwords will be hard to crack.

§7.3.2 Two-Factor Authentication

Now we’ll discuss how servers implement two-factor authentication.

For phone number verification, on signing up, the user sends a phone number with their password
hash. The server stores their phone number. Every time, the server will generate challenge
r

$← {0, 1}k

For app-generated codes, the user and server will first share a seed seed and use a pseudorandom
function Fseed(time). The server and the user can input the same time, and the outputs will be the
same. Generally, the server will test the last 30/60 seconds of values.

20The natural way is to hash multiple times, say 100. However, this is actually not more secure in the case of SHA256
but there are specific ways of composition. For example, there are application-specific integrated circuits (ASIC)
that can compute hash functions very efficiently.

77

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

78

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§8 February 19, 2025

§8.1 A Brief Recap: Secure Authentication

We’ll quickly review what we have covered so far.

Recall that we have introduced a third party, the server, who is trusted by all party’s and assigns
certificates.

After party’s have their certificates, they can run two-sided authenticated key-exchange.

79

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§8.2 Public Key Infrastructure

How can we know who has which public keys on the internet? We can rely on a Public Key
Infrastructure (PKI) to know each other’s public keys.

If Bob purports to be bob.com and wants to prove that vkB belongs to him, Bob will send a
certificate signing request (CSR) to a Certificate Authority (CA)21.

The CA will sign the message (bob.com, vkB) and send that signature σ back to Bob. This verifies
that the user of bob.com holds signing key skB with public key vkB.

21The higher beings that be...this is companies like DigiCert, Let’s Encrypt, etc.

80

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The standard of which is the X.509 certificate.

For example, when we try to access facebook.com, we can check that the certificate is valid22

This pivots on the fact that everyone must know vk of the certificate authority. We shift our trust
from individual sites and users to the certificate authorities. Most devices have the vks of trusted
authorities built in.

What happens if a root CA gets compromised? An attacker can issue as many malicious certificates
as they want - they could give certificates for Google, or certificates for Amazon, etc. This has
actually happened before, and can be very hard to detect.

§8.2.1 Certificate Chain

In reality, there are several certificate authorities, and they also form chains of certificate authorities.

22In browsers, this is represented by the lock symbol—clicking on that will allow you to verify that certificate.

81

https://en.wikipedia.org/wiki/DigiNotar
https://en.wikipedia.org/wiki/DigiNotar

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

A Root CA23 with a known (vk, sk)Gen(1λ) can first sign the vk1 of an Intermediate CA1, producing
cert cert1 = σ ← Signsk(vk1).

Then, the Intermediate CA1 can sign a certificate for Intermediate CA2, but we’ll have to preserve
this chain. Intermediate CA1 could produce cert σ1 ← Signsk1(vk2), but how do we know that sk1
is valid? So, we’ll need to include vk1 and vk1’s signature signed by sk. That is,

cert2 =vk1, σ ← Signsk(vk1),

vk2, σ2 ← Signsk1(vk2)

Finally, Intermediate CA2 can sign Bob’s verification key using their chain. Bob’s certificate will
contain

certB =vk1, σ ← Signsk(vk1),

vk2, σ2 ← Signsk1(vk2)

vkB, σB ← Signsk2(vkB)

How can an Intermediate CA restrict Bob’s use of these certificates? What if Bob will then go on
and start signing his own certificates for people? We can concatenate information in each certificate
23We mentioned earlier that CAs are built into devices. For example, here is a list of all root certificates that are

built-in for Apple devices. This can go wrong too! CAs have been misused which causes implications on the
security of the internet.

82

https://support.apple.com/en-us/HT213464
https://en.wikipedia.org/wiki/Root_certificate#Incidents_of_root_certificate_misuse

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

that restricts its use. It could specify whether it is being issued to an end user, or even additional
information like validity time.

To protect against CAs that get compromised, certificates are short-lived and have set validity times.
Additionally, certificate authorities can publish revocation lists that browsers check against when
validating a certificate.

§8.3 Case Studies

§8.3.1 SSH

Let’s work through the steps of GitHub’s SSH setup to see how it works.

The instructions are given for the EDDSA-25519 algorithm, which relies on elliptic curves.

1. We first generate a signing keypair (vkA, skA)← Gen(1λ) via

$ ssh-keygen -t ed25519 -C "your_email@example.com"

vkA is the id_ed25519.pub (the public key) skA is id_ed25519 (the private key).

2. We upload our public key to our account on GitHub. This is equivalent of communicating our
vkA to GitHub.

83

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

3. When we’re connecting via SSH to GitHub for the first time, our terminal will prompt us that
this is a new server with a new verification key.

> The authenticity of host ‘github.com (IP ADDRESS)’ can’t be established.
> RSA key fingerprint is SHA256:nThbg6kXUpJWGl7E1IGOCspRomTxdCARLviKw6E5SY8.
> Are you sure you want to continue connecting (yes/no)?

which we can verify against GitHub’s known verification keys24. This is the equivalent of
receiving a vkB from GitHub.

§8.3.2 Secure Messaging

How can we design a secure messaging service where two people, Alice and Bob, can communicate
across a server?

One solution is to have Alice sends an encrypted message, with a noted recipient (under Alice/Server’s
keys) to the server, the server decrypts it in the clear, and encrypts the message (using Bob/Server’s
keys) to send to Bob.

However, the message is completely revealed to the server in plaintext. Optimally, we don’t want to
do this, but many services do nevertheless. Alice and Bob can do a secure key exchange through
the server to get shared gab, and encrypt messages between them.

Alice will first encrypt using their shared key, then using their shared secret with the server, encrypt
that ciphertext. The server will decrypt the first layer, encrypt that with Bob’s key, and send that
to Bob.

We note that the server is still the perfect middleman, but our trust assumption is that the server is
semi-honest—it will honestly follow the protocol but can try to glean any additional information
from them.

24The security of our web upload to GitHub, or GitHub’s site which publishes the verification key, relies on the
security of the website, likely through TLS. But you could also imagine exchanging keys in person, etc.

84

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Why might we still adopt the first approach, sending messages in plaintext? Alice and Bob needs
to know their private keys, and remain ‘online’ all the time. If they switch a device, or lose their
phone, messages will get lost. Sending messages in plaintext avoids this scenario.

§8.3.3 Group Chats

What about group chats? How might we implement this.

When we move to group chats, there are more things we need to consider. For example, do we want
to reveal this message to the server? In this case, Alice can send the message in the clear to the
server and it is forwarded. Additionally, we might ask whether we want to hide the group structure
from the server.

85

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The first scenario is the same—users can send the encrypted message to the server, the server reveals
the message and reencrypts to the group members.

We might posit that Alice, Bob and Charlie share keys ga, gb, gc, then they jointly have shared
secret gabc. This is called multi-party key exchange. However, this is in fact very difficult and relies
on strong primitives.

Signal and WhatsApp use two different approaches (agree on the same key or pairwise keys), but
they both have tradeoffs. We’ll continue this next lecture.

In general, there are two paradigms for group messaging. Either everyone uses the same key, or
everyone has a different key. In WhatsApp, Alice would use a symmetric ratchet with key A, gr
(Alice’s key and group key) to send the message to the server, and WhatsApp will forward the same
encrypted message to Bob and Charlie. While the group structure is revealed to the server, but the
message contents are unbeknownst to the server.

86

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In Signal, on the other hand, every pair of users has a differnt key. If Alice wants to send a message
to Bob and Charlie, Alice will encrypt two messages, one with Alice/Bob’s key and another with
Alice/Charlie’s key. The server will forward the encrypted messages to the users respectively. In
Signal, a double ratchet encryption is preformed between every pair of parties. Another guarantee
is that the group structure can be hidden against the server—Alice sending individual messages to
Bob and Charlie is indistinguishable from their group texts.

87

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§9 February 24, 2025

§9.1 Single Sign-On (SSO) Authentication

Often, we’ll ‘log in with Google’ or ‘log in with Apple’25. A user will authenticate themselves
with the authentication server (Google, Apple, Shibboleth), and will be issued a ‘token’ (usually a
signature/MAC) for them to then authenticate themselves against the service provider.

Implementations include OAuth or OpenID, which is the format used by Google/Apple/Facebook,
etc. Within enterprises, Kerberos credentials allow for SSO as well as things such as printing,
connecting to servers, etc.

§9.2 Zero-Knowledge Proofs

As mentioned in our course outline, a Zero-Knowledge Proof (ZKP) is a scheme that allows a prover
to prove to a verifier some knowledge that they have, without revealing that knowledge.

What is a proof? We consider what a ‘proof system’ is. For example, we’ll have a statement and a
proof that is a purported proof of that statement. What guarantees do we want from this proof
system? If the statement is true, we should be able to prove it; and if the statement is false, we
shouldn’t be able to prove this. These are our guarantees of completeness and soundness.

Completeness. If a statement is true, there exists a proof that proves it is true.

25Even Brown has Shibboleth!

88

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Soundness. If a statement is false, any proof cannot prove it is true.

§9.3 Zero-Knowledge Proofs

A Zero-Knowledge Proof (ZKP) is a scheme that allows a prover to prove to a verifier some knowledge
that they have, without revealing that knowledge.

What is a proof? We consider what a ‘proof system’ is. For example, we’ll have a statement and a
proof that is a purported proof of that statement. What guarantees do we want from this proof
system? If the statement is true, we should be able to prove it; and if the statement is false, we
shouldn’t be able to prove this. These are our guarantees of completeness and soundness.

Completeness. If a statement is true, there exists a proof that proves it is true.

Soundness. If a statement is false, any proof cannot prove it is true.

We can think of NP languages from a proof system perspective.

Example 9.1 (Graph 3-Coloring)
Consider the Graph 3-coloring.

We define our language

L = {G : G has a 3-coloring}

and relation

RL = {(G, 3Col)}

Our statement will be that G has a 3-coloring. Our proof is providing such a coloring
(G, 3Col) ∈ RL.

This satisfies completeness and soundness. Every 3-colorable graph has a proof that is the
3-coloring itself, and if a graph doesn’t have a 3-coloring, it will not have a proof.

We can think of NP languages as a proof system. A language L is in NP if ∃poly-timeV (verifier)
such that

89

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Completeness. ∀x ∈ L, ∃w (witness) such that V (x,w) = 1.

Soundness. ∀x ̸∈ L, ∀w∗, V (x,w∗) = 0.

The prover will prove to the verifier that they have knowledge of witness w without revealing the
witness itself.

Definition 9.2 (Zero-Knowledge Proof System)
Let (P, V) (for prover and verifier) be a pair of probabilistic poly-time (PPT) interactive
machines. (P, V) is a zero-knowledge proof system for a language L with associated relation
RL if

Completeness. ∀(x,w) ∈ RL, Pr[P (x,w)↔ V (x) outputs 1] = 1. That is, if there is a x ∈ L
with witness w, a prover will be able to prove to the verifier that they have knowledge of
w.

Soundness. ∀x ̸∈ L, ∀P ∗, Pr[P ∗(x) ↔ V (x) outputs 1] ≃ 0. That is, for every x not in
the language, our prover P ∗ will not be able to prove its validity to V , with negligible
probability. If P ∗ is PPT, we call the system a zero-knowledge argument.

§9.3.1 Proof of Knowledge

Intuitively, if the prover is able to prove, then they must know a witness w. There exists some
extractor such that, if you can prove it true, there is some extractor that can extract the witness
from it.

∃E s.t. ∀p∗, ∀x,Pr[EP ∗(·)(x) outputs w s.t. (x,w) ∈ RL] ∼= Pr[p∗ ↔ V (x) outputs 1]

§9.3.2 Honest-Verifier Zero-Knowledge

Honest-Verifier Zero-Knowledge (HVZK) can be thought of as security against a semi-honest verifier.
In this scenario, the verifier will follows the protocol honestly.

∃PPT S s.t. ∀(x,w) ∈ RL,ViewV (P (x,w)↔ V (x)) ≃ S(x)

That is, that the transcript can be simulated by a simulator S without interaction with the verifier,
and without w.

90

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§9.3.3 Zero-Knowledge (Malicious Verifier)

Now assume that the verifier is malicious. In other words, the verifier can deviate from the protocol
in attempt to extract more information than intended. Note that a malicious verifier V ∗ is unable
to learn anything about w.

We need an additional property that this is actually zero-knowledge26. We want to say that the
verifier is unable to extract any additional information from the interaction between the verifier and
prover. That is, even without the witness, a verifier might be able to ‘simulate’ this transaction by
themselves!

We’ll say ∀PPT V ∗, ∃PPT S such that ∀(x,w) ∈ RL,

OutputV ∗ [P (x,w)↔ V ∗(x)] ≃ S(x).

That is to say, for everything in the language, the output transcript between the prover and verifier
can be simulated by the simulator without knowledge of the witness27.

§9.3.4 Zero-Knowledge Proof of Knowledge

So we’ve built up our four properties:

• Completeness: The prover can prove whenever x ∈ RL.

• Soundness: For any x not in RL, the prover can only prove x ∈ RL with negligible probability.

• Zero Knowledge: The verifier does not gain any additional information from the proof. That
is, a simulator could have ‘thought up’ the entire transcript in their head given the ability to
rewind.

• Proof of Knowledge: An even stronger guarantee than soundness (this implies soundness)—a
prover must have the witness in hand to be able to prove x ∈ RL. That is, an extractor could

91

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

interact with the prover (and rewind) to be able to extract the information of w from the
interaction.

§9.4 Example: Schnorr’s Identification Protocol

Let G be a cyclic group of prime order q with generator g, h = ga. We wish to prove the relation

RL = {(gα, α)}α∈Zq

The language L is given by
L = {h ∈ G : ∃a ∈ Zq s.t. h = ga}

However, this is exactly the entire group, i.e. L = G.

Generator g is known, and the prover wishes to prove that they have the discrete log of h (α where
gα ≡ h).

Completeness here is clear, the prover is able to produce such s if the prover has knowledge of α.

§9.4.1 Proof of Knowledge

We wish that

∃PPT E s.t. ∀PPT P ∗, ∀x ∈ L,EP ∗(·)(x) outputs w s.t. (x,w) ∈ RL

“That there exists an extractor that by interacting to the prover P ∗ that can extract w/α”

In this case, E can rewind the prover as well. We do so as follows:

92

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We get the prover to commit to some r and A := gr, and pick 2 σ’s (rewinding) such that we have

gs = hσ · u

gs
′
= hσ

′ · u

Given these two equations, we can

gs−s′ = hσ−σ′

Then we have

g(s−s′)(σ−σ′)−1
= h =⇒ α = (s− s′)(σ − σ′)−1

§9.4.2 Honest-Verifier Zero-Knowledge

Can we also construct Zero-Knowledge for this protocol?

∀PPT V ∗, ∃PPT S s.t. ∀(x,w) ∈ RL,OutputV ∗(P (x,w)↔ V ∗(x))
C≃ S(x)

We first do this for Honest-Verifier Zero-Knowledge. This can be thought of as security against a
semi-honest verifier.

∃PPT S s.t. ∀(x,w) ∈ RL,ViewV (P (x,w)↔ V (x)) ≃ S(x)

That is, that the transcript can be simulated by a simulator S without interaction with the verifier,
and without w.

93

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We construct a simulator that gives us specific values of A, σ, s where we can satisfy the equation
gs = hσ ·A. Once we have s and σ, we can easily compute the A desired.

We don’t have to generate them in order. Fixing s and sampling σ
$← Zg, we can compute

gs · h−σ = A.

§9.5 Example: Diffie-Hellman Tuple

We want to prove that h = ga, u = gb, v = gab is a Diffie-Hellman Tuple in a cyclic group G of order
q and generator g.

Our witness is ‘private exponent’ b. Our statement is that ∃b ∈ Zq such that u = gb and v = hb.

94

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The prover will randomly sample r
$← Zq and send to the verifier A := gr and B := hr. The verifier

randomly samples challenge σ
$← {0, 1}, and sends this challenge bit to the prover. The prover will

respond with s := σ · b+ r (mod q). If the challenge bit was 0, s = r and the verifier verifies A = gS

and B = hS . If the challenge bit was 1, s = b+ r and the verifier verifies u ·A = gs and v ·B = hS .

Completeness: If this statement is true, the prover will be able to convince the verifier since they
have knowledge of b.

Next lecture, we will prove proof of knowledge and honest-verifier zero-knowledge.

95

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§10 February 26, 2025

Today, we continue our discussion on zero-knowledge proofs. First, we will briefly give an overview
on our next project involving anonymous online voting. We will revisit the example on the Diffie-
Hellman Tuple, then discuss Non-Interactive Zero-Knowledge proofs. We will show how to achieve
this using Fiat-Shamir Heuristic, talk about Elgalmal encryption for homomorphism and threshold
decryption, and revisit how these relate to anonymous online voting.

§10.1 Anonymous Online Voting

Say we have n voters with votes v1, . . . , vn ∈ {0, 1}. Each voter encrypts their vote Enc(v1), . . . ,Enc(vn).
Our goal is to compute the sum of these votes without having to decrypt each vote individually.
Somehow, we must find Enc(

∑
vi) then decrypt to find

∑
vi.

In this scenario, zero-knowledge proofs can be used to ensure that each vote v1 is 0 or 1 and to
verify that the sum

∑
vi was computed correctly.

§10.2 Zero-Knowledge Proof of Knowledge

Recall the five properties.

• Completeness: The prover can prove whenever x ∈ RL.

• Soundness: For any x not in RL, the prover can only prove x ∈ RL with negligible probability.

• Proof of Knowledge: If a prover P ∗ can prove, then they must know w.

• Honest-Verifier Zero-Knowledge (HVZK). An honest verifier doesn’t learn anything about w.

• Zero Knowledge: A malicious V ∗ doesn’t learn anything about w.

§10.3 Example: Diffie Hellman Tuple

We want to prove that h = ga, u = gb, v = gab is a Diffie-Hellman Tuple in a cyclic group G of order
q and generator g.

Our witness is ‘private exponent’ b. Our statement is that ∃b ∈ Zq such that u = gb and v = hb.

96

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The prover will randomly sample r
$← Zq and send to the verifier A := gr and B := hr. The verifier

randomly samples challenge σ
$← {0, 1}, and sends this challenge bit to the prover. The prover will

respond with s := σ · b+ r (mod q). If the challenge bit was 0, s = r and the verifier verifies A = gS

and B = hS . If the challenge bit was 1, s = b+ r and the verifier verifies u ·A = gs and v ·B = hS .

Completeness: If this statement is true, the prover will be able to convince the verifier since they
have knowledge of b.

Soundness: Show that if the prover does not have b, the probability that they send a valid S = σb+r
mod q is negligible. The prover can be malicious and does not have to follow the protocol. In the
first round, they do not have to send A = gr, B = hr, but they can send A = gr1 , B = hr2 .

Proof of Knowledge: Formally, ∃PPT E (called extractor) such that ∀P ∗ (potentially dishonest
prover), ∀x,

Pr[EP ∗(·)(x) outputs w s.t. (x,w) ∈ RL] ≃ Pr[P ∗ ↔ V (x) outputs 1].

This is to say, the probability that the extractor can extract a witness is computationally indistin-
guishable from the probability of the prover successfully proving x ∈ RL.

An extractor, interacting with a prover (not necessarily honest), should be able to extract the
witness w out of its communication with the prover, with the additional power that it can rewind
the prover.

97

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The extractor can first pick σ = 0, which gives them s such that A = gs, B = hs. Then, the
extractor rewinds the protocol and issues challenge σ′ = 1, gaining s′ such that u · A = gs

′ and
v ·B = hs

′ .

Then, u = gs−s′ and v = hs−s′ , combining these they can extract valid b = s− s′ (mod q). If the
prover can always convince the verifier, then the extractor will always be able to extract the witness
w.

Honest-Verifier Zero-Knowledge

∃PPT S s.t. ∀(x,w) ∈ RL,ViewV (P (x,w)↔ V (x)) ≃ S(x)

We want to ensure that the verifier does not know anything about the witness.

§10.3.1 Non-Interactive Zero-Knowledge (NIZK) Proofs

98

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

These all fall under a class called Sigma Protocols (they look like a capital Σ). A prover will
first commit to some A, the verifier issues a challenge σ, then the prover will provide a proof
corresponding to their A and σ.

What if we wanted to condense it into a protocol that was non-interactive, and only relies on the
prover sending one round of ‘proof’ to the verifier.

Completeness and soundness are the same. What about our previous definition of zero-knowledge?
For all verifiers, will the simulator be able to simulate the one-way transcript? This is equivalent to
the simulator being able to prove the statement itself28. Since there is only one round, the simulator
‘loses’ its ability to rewind the prover and verifier. In the plain model, we cannot achieve a NIZK
proof.

To make NIZK proofs possible, there are a few models available to us.

Common Random String/Common Reference String (CRS): There is a trusted third-party
that both parties have access to, who generates a shared reference string.

The power that we give to the simulator is that the simulator is allowed to generate this
random/reference string together with the proof. This should be indistinguishable against
the real-world.

In reality, the CRS can be generated in a key ceremony between parties such that no
party can interfere with the generated key.

28This is generally impossible! For example, a NIZK for the DH tuple that satisfies Zero-Knowledge breaks the
Decisional Diffie-Hellman assumption.

For the sake of contradiction, say we had such a simulator. To distinguish whether (ga, gb, gc)
c≃ (ga, gb, gab),

we can feed this to the simulator to get a proof, and check with the verifier whether the proof is valid. The proof
is valid if and only if it is a valid tuple. This contradicts DDH. Such a simulator had better not exist.

99

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

There are some formal proof definitions of Zero-Knowledge, etc elided here but are in the
post-notes.

Random Oracle (RO) Model: The prover and verifier have access to a hash function and it
is a random oracle (behaves as if it is a random function).

The additional power we give to the simulator is that they can control the behavior of
the random oracle.

27That is, the prover could just send the witness in the clear to the verifier, which satisfies completeness and
soundness.

28This is counterintuitive, because if any PPT can simulate the proof by themselves, how do we know we’re even
talking to a prover that has a witness? This is subtle, but we give extra power to the simulator that they are
allowed to rewind the verifier to some previous step. If the transcript can be simulated, then surely no information
is leaked from the protocol.

100

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§10.3.2 Fiat-Shamir Heuristic

We can convert any Sigma protocol into a NIZK under the random oracle model. Recall that the
only thing that could have gone wrong is that σ

$← D was not computed randomly. Instead of
using a challenge from the verifier, the challenge becomes σ : H(x||m1), a hash of the transcript so
far. Since both the prover and verifier have access to the hash function, the prover can generate a
challenge for themselves. After that, the prover can generate response.

A malicious verifier has no control over σ now, so a malicious verifier cannot do anything more than
seeing the proof. A malicious prover also cannot produce a valid σ without committing to a m1

first before receiving σ.

We can transform any public-coin29 HVZK of arbitrary number of rounds into a NIZK using the
Fiat-Shamir heuristic in the random oracle model.

Every public coin challenge will become the hash of the transcript so far from a random oracle.
This condenses the entire proof into a single message that can be sent to the verifier (and that a
verifier at a later point in time can also verify).

Example 10.1
The Fiat-Shamir Heuristic can also transform Schnorr’s Identification Protocol into Schnorr’s
Signature Scheme in the RO model, such that it becomes a NIZK proof.

We have a cyclic group G of order g, and generator g.

Public verification key vk = ga, secret signing key sk = a.

We condense the Schnorr’s Identification Protocol into a NIZK proof. To sign a message m:

1. prover samples r
$←− Zq and computes A := gr

2. prover computes σ := H(A||M)

3. prover computes s := σ ∗ a+ r mod q

4. prover sends (A, s) to verifier

5. verifier checks gs
?
= hσ ·A, which is true only if h = g

29Every message sent from the verifier is randomly sampled from a public domain distribution, as a challenge.

101

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§10.4 Putting it Together: Anonymous Online Voting

§10.4.1 Homomorphic Encryption

Homomorphic encryption refers to encryption that allows for operations on the ciphertext corre-
sponding to operations on the plaintext.

For example, an additively homomorphic scheme has the property that

Enc(m1) + Enc(m2) = Enc(m1 +m2).

Similarly for multiplicatively homomorphic schemes,

Enc(m1) · Enc(m2) = Enc(m1 ·m2).

Example 10.2 (ElGamal Homomorphism)
Let’s look at the ElGamal encryption scheme. We have a cyclic group G with generator g,
public key pk.

Encpk(m1) = (gr1 , pkr1 ·m1)

Encpk(m2) = (gr2 , pkr2 ·m2)

We note that this is multiplicatively homomorphic (element-wise):

Encpk(m1) · Encpk(m2) = (gr1+r2 , pkr1+r2 · (m1 ·m2)) = Encpk(m1 ·m2).

This gives us multiplicative homomorphism, but we want additive homomorphism (we want
votes to add, not multiply).

We can consider exponential ElGamal, where the message is a power of g (and exponents add).

Encpk(m1) = (gr1 , pkr1 · gm1)

Encpk(m2) = (gr2 , pkr2 · gm2)

then
Enc(m1) · Enc(m2) = (gr1+r2 , pkr1+r2 · gm1·m2) = Enc(m1 +m2).

but how do we recover the message? We can decrypt (normally) to get gm1+m2 , but solving for
m1 +m2 is hard, since it is a discrete log.

However, we’re using this in the context of online voting. If m ∈ {0, . . . , n} for n the total
number of voters (some polynomial range). This is fine for our uses!30

30Normally, we talk about exponents from exponentially large sizes. Here, we can solve the discrete log since n is
quite small.

102

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§11 March 3, 2025

§11.1 Anonymous Online Voting

Recall anonymous online voting.

Say we have n voters with votes v1, . . . , vn ∈ {0, 1}. Each voter encrypts their vote Enc(v1), . . . ,Enc(vn).
Our goal is to compute the sum of these votes without having to decrypt each vote individually.
Somehow, we must find Enc(

∑
vi) then decrypt to find

∑
vi.

There are three questions.

1. How do we compute Enc(
∑

vi)?

2. How do we ensure each vote is 0 or 1?

3. Who decrypts Enc(
∑

vi)?

§11.2 Additively Homomorphic Encryption

1. Additively homomorphic encryption is taking two encryptions Enc(m1) and Enc(m2) and
combine them to get Enc(m1 +m2).

2. Multiplicatively homomorphic encryption is taking two encryptions Enc(m1) and Enc(m2)
and getting the product Enc(m1 ·m2).

Example 11.1 (Elgalmal Encryption)
Elgamal Encryption: Cyclic group G with generator g, and the public key is given by pk = gsk.
The encryption of message m1 is given by Encpk(m1) = (gr1 , pkr2 ·m1) and the encryption
of message m2 is given by Encpk(m2) = (gr2 , pkr2 ·m2). If we multiply the first components
together and then the second components together, we get (gr1+r2 , pkr1+r2 · (m1 ·m2)) which is
exactly Enc(m1 ·m2). Thus, we have multiplicatively homomorphic encryption.

Exponential Elgamal: The encryption of message m1 is given by Encpk(m1) = (gr1 , pkr1 ·gm1)
and the encryption of message m2 is given by Encpk(m2) = (gr2 , pkr2 · gm2). If we multiply
them together element-wise like before, we get (gr1+r2 , pkr1+r2 · gm1+m2) which is exactly
Enc(m1 +m2). thus, we have additively homomorphic encryption.

How do we do decryption? Normally, we take c1 = gr1+r2 and c2 = pkr1+r2 · gm1+m2 and
compute c2/c

sk
1 . Usually this equals the plaintext, but in this scenario it equals gm1+m2 .

In our anonymous online voting scenario, each vote will be 0 or 1. Thus, the summation of
all the votes is at most n, where n is the number of voters. This is a polynomial number of

103

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

possibilities, so we can compute gm for each m ∈ {0, 1, . . . , n} and see which one matches g
∑

mi

to recover the summation of the votes.

§11.3 Threshold Encryption

Definition 11.2 (t-out-of-n threshold)
In t-out-of-n threshold encryption, we must have t parties out of n parties come together in
order to decrypt.

Let t parties be denoted by p1, . . . , pt. Each party pi works independently and runs a partial gen
algorithm PartialGen(1λ), which generates a public and secret key pair (pki, ski). After everyone
is done, we combine all of the public keys pki to get one collective public key pk. A message is
encrypted using it ct← Encpk(m). Note that a single party cannot decrypt by themselves.

In order to decrypt, each party pi runs a partial decryption algorithm PartialDec(ski, ct) that gives
a partial decryption di. Then, we combine all of the partial decryptions di to get the plaintext m.

§11.3.1 Threshold Encryption: Elgamal

Now we give an explicit construction of threshold encryption using Elgamal.

Each party pi generates a random secret key ski ← Zq and public key pki = gski . Let pk be the
product of all pki, which gives us g

∑
ski . Next we encrypt ct = (c1, c2) = (gr, pkr · gm). In order

to decrypt this, we need to compute c2/c
sk
1 where sk =

∑
ski. However, any single party does not

know sk by themselves.

To decrypt, each party pi does a partial decryption by computing di = cski
1 . When all parties come

together, they can multiply all the partial decryptions di which gives us c
∑

ski

1 = csk1 . We can use
this to compute c2/c

sk
1 and decrypt.

104

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§11.4 Voting Framework

We have some servers:

Registrar. For a voter to be able to vote, they register with the Registrar to obtain a certificate to
vote. They get a certificate for their verification key.

Arbiters. The arbiters will generate the threshold encryption keys. There will be t arbiters and
each will have their (pki, ski). They all reveal pki to the public, so that everyone can compute
the full public key pk.

Voter. The voter, using the public key, will encrypt vi ∈ {0, 1}. The voter will sign this vote using
their signing key. They will send this vote to the Tallyer.

Tallyer. The tallyer will check that the signature is valid. Then, they will strip the signature and
output (votei, σi, zkpi) for each vote.

§11.4.1 Correctness of Partial Decryption

Given a cyclic group G of order q with generator g, we have three pieces of public information.

1. The partial public keys of each party pki ∈ G.

2. The ciphertext c = (c1, c2).

3. The partial decryption of each party di.

105

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The witness is the partial secret key ski which is private to each party. The language for ZKP for
partial decryption is

RL = {((c1, pki, di), ski︸ ︷︷ ︸
witness

) : pki = gski ∧ di = cski1 }

This is still the Diffie-Hellman tuple! pki = gski , c1 = gr, di = gr·ski . We can use the NIZK for
Diffie-Hellman tuple as discussed in previous lectures.

§11.4.2 Correctness of Encryption

We want voters to prove that their encryption is either of 0 or 1. We’re in group G with order q
and generator g. We have public key pk ∈ G, and ciphertext c = (c1, c2). We’re trying to prove the
statement “c is an encryption of 0 OR c is an encryption of 1.”

Our languages are then encryptions of 0 and encryptions of 1:

RL0 = {((pk, c1, c2)︸ ︷︷ ︸
x

, r︸︷︷︸
witness

) : c1 = gr ∧ c2 = pkr}

RL1 = {((pk, c1, c2)︸ ︷︷ ︸
x

, r︸︷︷︸
witness

) : c1 = gr ∧ c2 = pkr · g}

where r is our private key. Using this, we can prove that c is an encryption of 0 (c2 = pkr) or c is
an encryption of 1 (c2 = pkr · g).

§11.5 Proving AND/OR Statements

For AND, our statements are x1, x2 and our witnesses are w1, w2. The language is given by

RAND = {((x1, x2), (w1, w2)) : (x1, w1) ∈ RL1 AND (x2, w2) ∈ RL2}

To prove this language, we can use a ZKP for RL1 and a ZKP for RL2 .

For OR, our statements are x1, x2 and our witness is w. The language is

ROR = {((x1, x2), w) : (x1, w) ∈ RL1 OR (x2, w) ∈ RL2}

To prove this language, we cannot use a ZKP for RL1 and a ZKP for RL2 . If we do, then we
reveal whether (x1, w) ∈ RL1 and whether (x2, w) ∈ RL2 , which is revealing more information than
allowed.

106

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

To prove ROR, we know that both languages RL1 and RL2 works with a sigma protocol. The prover
is going to send (A1, B1) for the first language and (A2, B2) for the second language, pretending
that both are correct. The verifier sends a challenge σ ← Zq. The prover separates σ into σ1 and σ2,
and computes responds S1, S2 for σ1, σ2 respectively. Then the verifier will verify that σ = σ1 + σ2,
as well as the responses ((A1, B1), σ1, S1) and ((A2, B2), σ2, S2).

How does the Prover compute a response for both statements? Since we are working with OR, we
might not have inclusion in one of the languages. For that language, we will simulate it.

107

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§12 March 5, 2025

This lecture we will continue our discussion on zero-knowledge proofs for OR statements, discuss
RSA blind signature, and put it all together for anonymous online voting. Then we will discuss
prime-order groups and more example of sigma protocols.

§12.1 Blind Signature

As a recap, in the voting framework, each voter receives a σi (certificate certi) from the Registrar,
which is eventually published by the Tallyer. The Registrar is able to figure out who is voting, since
they know exactly which signatures have been issued to the voters. To hide this information from
the Registrar, we introduce something called blind signatures. This is a new idea this semester, and
is used in practice.

Signer Requester

(vk, sk)← Gen(1λ) (m′, r)← Blind(m)

m′

σ′ ← SignBlindsk(m
′)

σ′
σ = Unblind(σ′, r)

Vrfyvk(m,σ) = 1

If the Signer sees σ after this protocol, they will be unable to recognize if they signed it before.

§12.2 RSA Blind Signature

Signer Requester

(vk, sk)← Gen(1λ) Blind(m) :

r ←$ Z∗
N

m′ := H(m) · re mod N

m′

SignBlindsk(m
′) :

σ′ := (m′)d

σ′
Unblind(σ′, r)

σ := σ′ · r−1 mod N

Vrfyvk(m,σ) = 1

108

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Notice that

σ′ = (m′)d

= (H(m) · re)d

= H(m)d · red

= H(m)d · r mod N

Thus σ := σ′ · r−1 = H(m)d mod N .

§12.3 Anonymous Online Voting

Here is a recap of the voting framework.

We have some servers:

Registrar. For a voter to be able to vote, they register with the Registrar to obtain a certificate to
vote. They get a certificate for their verification key.

Arbiters. The arbiters will generate the threshold encryption keys. There will be t arbiters and
each will have their (pki, ski). They all reveal pki to the public, so that everyone can compute
the full public key pk.

Voter. The voter, using the public key, will encrypt vi ∈ {0, 1}. The voter will sign this vote using
their signing key. They will send this vote to the Tallyer.

109

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Tallyer. The tallyer will check that the signature is valid and the user has not voted before. Then,
they will strip the signature and output Encpk(v1), . . . ,Encpk(vi), . . . ,Encpk(vn).

§12.4 Multiple Candidates

Recall earlier when we talked about homomorphic encryption, each voter has encrypts their vote
vi ∈ {0, 1}. This works if we have only two candidates. What if we want to have multiple candidates?
Then, we need vi ∈ {0, 1, . . . , t− 1}. Furthermore, Enc(

∑
vi) no longer gives us the majority vote.

One idea is for each of the t candidates, we use 0/1 voting. Every voter votes for each candidate,
yes or no, and then the votes are summed and decrypted as in two candidate voting. This gives
something like an “approval rating” for each candidate, where voters can vote for multiple candidates.

§12.5 More Examples of Sigma Protocols

Remark 12.1. The following are examples of sigma protocols. We do not go in depth in lecture, and
we do not expect you to study these examples thoroughly at all - they are just examples of what ZKPs
can look like besides the ones we have seen so far.

Example 12.2 (Okamoto’s Protocol for Representation)
This is similar to Diffie-Hellman, except there are two group elements as input (h, u) instead of
3. Now we want to prove that u = gahb.

The protocol is also similar to the Diffie-Hellman example, except the Prover will sample two
random integers instead of one. One corresponds to a, and the other corresponds to b.

Input: Cyclic group G of order q, generator g, h, u.

Witness: (a, b)

Language: RL = {((h, u), (a, b)) : u = gahb}

110

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Prover Verifier
r1 ←$ Zq

r2 ←$ Zq
A = gr1hr2 mod q

σ σ ←$ Zq

S1 = σ · a+ r1 mod q

S2 = σ · b+ r2 mod q

Verify:
gs1 · hs2 = uσ ·A

For completeness, you can do the math and everything works out. It is saying that if both
parties are honest, following the protocol, it will be verified. Proof of Knowledge was not
covered in lecture, but it is similar to the examples covered in before lectures. Honest-Verifier
Zero-Knowledge can be proved by considering the entire transcript, which can be simulated
by a simulator without knowing the witness (a, b). The intuition is the same as before. You
change the order of the messages. For example, sample σ, S1, S2 randomly in that order, then
compute A, and that will be the exactly the same distribution as the reward.

Example 12.3 (Arbitrary Linear Equations)
Input: Cyclic group G of order q, generator g, h, u, v.

Witness: (a, b, c)

Language: RL = {((h, u, v), (a, b, c)) : u = gahb ∧ h = uavbgc}

The idea for the protocol is the same as before. We sample random r1, r2, r3 which correspond
to a, b, c respectively. A corresponds to u = gahb and B corresponds to h = uavbgc. Note that
everything in the diagram is taken modulo q.

111

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Prover Verifier
r1, r2, r3 ←$ Zq

A = gr1hr2

B = ur1vr2gr3

σ σ ←$ Zq

S1 = σ · a+ r1

S2 = σ · b+ r2

S3 = σ · c+ r3

Verify:

gS1hS2 = uσ ·A
uS1vS2gS3 = hσ ·B

Completeness follows from assuming that the prover and verifier honestly follow the protocol,
and we can confirm by following the math that it will be verified correctly. Proof of Knowledge
is saying that we can extract knowledge from the prover. An Extractor will run the protocol
with the Prover once, and then rewind and run the protocol again with a different challenge σ′.
You can do this exercise offline. For Honest-Verifier Zero-Knowledge, the entire protocol can be
simulated by a simulator without knowing the witness by changing the order of the messages.
In particular, you can first sample σ and then sample S1, S2, S3 randomly, which can be done
because these numbers are random because of r1, r2, r3, then compute A,B.

This example is similar to the previous example, except we have h = uavbgc added to u = gahb.
In general, we can keep extending this language to an arbitrary number of equations of this
form.

112

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§13 March 10, 2025

This lecture we cover more examples of sigma protocols and zero-knowledge proofs for All NP.

§13.1 Zero-Knowledge Proof for Graph 3-Coloring (All NP)

Given a graph G, with vertices and edges, let the language be defined as the set of all graphs that
have a 3-coloring. This is an NP language given by L = {G : G has 3-coloring}. The NP relation is
RL = {(G, 3Col)}.

Recall that a graph has a k-coloring if it is possible to color each vertex from a set of k colors such
that adjacent vertices have different colors. For example, below is a graph with a three coloring.

A

B

C

D

E

Now we construct a proof without revealing the 3 coloring. Both the Prover and the Verifier can
see the graph structure, but only the Prover can see the coloring. The Prover wants to prove that
the graph is 3 colorable without revealing the coloring.

First, the Prover will hide all of the colors in the 3 coloring. Say that the Prover covers up each
vertex with a piece of paper. They can color in the coloring, but after the paper goes down, the
coloring cannot be modified. There is a way to do this cryptographically, which we will discuss later.

Next, the Verifier will give a random challenge, for example, choose two adjacent vertices. The
Prover will reveal their colors, and show that they are different colors. Doing so will reveal the
colors of some vertices, which is undesirable. Instead, we can map the original colors to a different
color, so that whichever colors are revealed are random. We keep the set of colors the same. For
example, we can remap the colors as follows.

blue→ red
red→ blue

green→ red

Checking one edge is not sufficient for the Verifier to be convinced that the graph is 3-colorable. If G /∈
L, i.e. the graph is not 3-colorable, the probability that the Prover is caught is Pr[P ∗ is caught] ≥

113

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

1/|E|. This is because if the graph is not 3-colorable, then there exists at least 1 edge whose vertices
have the same color. The probability of the Verifier picking this edge is 1/|E|. There is some
probability of catching the Prover, so we can amplify this, i.e. amplifying soundness.

One way to do this is for the Verifier to choose multiple edges. Then the Prover must remap the
colors to avoid revealing the original coloring. The process is as follows: the Prover remaps the
colors, then the Verifier chooses and edge, and the Prover reveals the colors of the vertices on that
edge to show that they have distinct colors. This repeats multiple times, with the Prover remapping
the colors randomly each time.

The Verifier is allowed to choose the same edge in multiple iterations. If the graph is not 3-colorable,
the Prover might try to cheat by setting two adjacent vertices with the same color after they have
been checked. Thus, the Verifier may want to check the same edge again to ensure that the Prover
does not do so.

If we repeat this n times, the probability that the Prover P ∗ survives (not caught) is

Pr[P ∗ survives] ≤ (1− 1/|E|)n.

If we pick n = λ|E|, then

Pr[P ∗ survives] ≤ (1− 1/|E|)λ|E|

≈ (1/e)λ.

§13.2 Commitment Scheme

In the earlier 3-coloring example, the Prover places down a piece of paper on each of the vertices
so that the color is hidden and cannot be modified. We discuss a cryptographic protocol that can
achieve this, which is called a commitment scheme.

Sender Receiver
m ∈ {0, 1}

Commit:

r ←$ {0, 1}λ

c := Com(m; r) c

Open:

(m, r) Verify:

c = Com(m; r)

There are two properties with this scheme:

114

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

• Hiding: The commitment of 0 is roughly the same as the commitment of 1, i.e. Com(0; r) ≈
Com(1; s).

• Binding: If one has committed to some message, then later on they can only open up to the
message that they have committed. They cannot open up do something else. In other words,
it is hard to find r, s such that Com(0; r) = Com(1; s).

Example 13.1 (Hash-based commitment)
Randomly sample r ←$ {0, 1}λ. Then the commitment is Com(m; r) := H(r||m) for a hash H.
The hash is modeled as a random oracle.

This commitment scheme is hiding because the hash function output appears random. The
binding property follows from collision resistance of H, which means that it is hard to find
two inputs that give the same output.

Example 13.2 (Pedersen Commitment)
Take a cyclic group G with order q and generator g. Let h←$ G for h = gx where x is hidden
to the sender. h can be generated by the receiver. Then randomly sample r ←$ Zq and the
commitment is Com(m; r) = gm · hr.

Hiding holds because hr appears as a random group element, so gm · hr is random and can be
any group element since g is a generator, sort of like a one-time pad.

Binding follows from the discrete log assumption. If we find two r0, r1 ←$ Zq with Com(0; r0) =
Com(1; r1), then

g0 · hr0 = c = g1 · hr1

hr0−r1 = g

h = g(r0−r1)−1

which essentially solves the Discrete Log problem, which is assumed to be hard. Thus, it is
hard to find two such r0, r1.

§13.3 Zero-Knowledge Proof for Graph 3-Coloring

Now we give a protocol for a Zero-Knowledge Proof for Graph 3-Coloring.

Input: Graph G = (V,E) with vertices V and edges E.

Witness: A coloring ϕ : V → {0, 1, 2} that assigns vertices to colors 1, 2, 3.

115

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Prover Verifier
Randomly sample π : {0, 1, 2} → {0, 1, 2}
∀v ∈ V, rv ←$ {0, 1}λ, cv := Comm(π(ϕ(V)); rv)

{cv}v∈V

Randomly pick an edge (u, v) ∈ E

(u, v)

Open commitments Cu and Cv

α = π(ϕ(u)), ru

β = π(ϕ(v)), rv
Verify:

Cu = Comm(α; ru)

Cv = Comm(β; rv)

α, β ∈ {0, 1, 2}, α ̸= β

This lets us prove all NP languages—we can do a reduction to the 3-coloring and prove it that way.
In reality, this is expensive and merely a theoretical result.

§13.4 Circuit Satisfiability

In reality, many choose another NP-complete language, the circuit satisfiability problem. The
language considers an arbitrary boolean circuit which consists of AND, XOR gates. The input
are certain values x for input values, and witnesses w are the rest of the wires. The satisfiability
problem is whether there exists some w to make the circuit evaluate to 1. Since the input can be
any boolean circuit, this is adaptable and widely used in implementation.

This circuit model is considered a lot.

Example 13.3 (Pre-Image of Hash Function)
The function is C(x,w) = H(w)− x+ 1. The circuit will output 1 on w such that H(w) = x.
w here is the pre-image of x.

This allows us to, say, represent SHA as a boolean circuit to prove the pre-image of a hash
function.

The intuition of the zero-knowlege proof is similar. Let’s say the prover has some input values. The
prover will commit to the bit of every wire.

For example, when a verifier asks to confirm a certain XOR gate, the prover will perform a small

116

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

zero-knowledge proof to prove that that gate was computed correctly. Composing commitments
and using sigma protocols from before will allow us to gain the functionality we want.

Let’s say

c1 = Com(x)

c2 = Com(y)

c3 = Com(z)

and x = y ⊕ z. Using a sigma-OR protocol, we can prove

(y = 0, z = 0, x = 0) OR (y = 0, z = 1, x = 1) OR · · ·

This allows us to do ZK-proofs for circuit satisfiability.

§13.4.1 Proof Systems for Circuit Satisfiability

We discuss the proof systems so far for circuit satisfiability.

The naïve proof is to reveal witness w. This is not zero-knowledge, but is non-interactive. Using
Σ-protocols, we have zero-knowledge but not non-interaction. Using the Fiat-Shamir heuristic, we
get both zero-knowledge and non-interaction.

For the easiest NP proof, communication requires O(|w|) complexity and the verifier verifies in O(|c|)
(linear in number of gates) complexity. For Σ-protocols, communication requires a commitment to
each wire, which is O(|c| · λ) (needs a factor of λ security parameter), and the verifier also verifies
in O(|c| · λ). This is the same for NIZK.

NP Σ-Protocol (Fiat-Shamir) NIZK
Zero-Knowledge No Yes Yes
Non-Interactive Yes No Yes
Communication O(|w|) O(|C| ∗ λ) O(|C| ∗ λ)

Verifier’s computation O(|C|) O(|C|) O(|C|)

Even if we do our proof with the Fiat-Shamir heuristic, we will incur linear communication costs
and computation costs. Can we make this proof system more succinct? In other words, can we have
communication and verification complexity to be sublinear in |c| and |w|? In other words, would it
be possible to design a protocol that is even more efficient than just sending each witness in the
clear?

Yes! We can do this with zk-SNARGs, which we will cover more in-depth next lecture.

117

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§14 March 12, 2025

This lecture we cover in more detail Succinct Non-Interactive Arguments (SNARGs).

§14.1 Succinct Non-Interactive Argument (SNARG)

This brings us to succinct arguments, which are seemingly not quite possible.

Definition 14.1 (Succinct Non-Interactive Arguments)
A non-interactive proof/argument system is succinct if

• The proof π is of length |π| = poly(λ, log |c|).

• The verifier runs in time poly(λ, |x|, log |c|).

Additionally, SNARKs are Succinct Non-Interactive Arguments of Knowledge. A zk-SNARG or
zk-SNARK additionally guarantees zero-knowledge property.

Why succinct proofs? Here are some examples where we might want succinct proofs.

Example 14.2 (Verifiable Computation)
The client sends some x to the server, along with function f . The server sends back y = f(x)
and a proof. The client wants to check if the computation was done correctly.

Server Client

x

compute f

y Check y = f(x)

If we did not have succinct proofs, then the client would still have to run the function again to
verify the output. Note this allows interactions, so this is not the go-to example.

Is it possible? This remains as the large problem. Even in the naïve NP situation, we need to send
the entire witness w and check the entire witness.

Enter probabilistically checkable proofs (PCP):

118

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The prover prepares a proof and the verifier will only need to check certain bits of the proof.

Theorem 14.3 (PCP Theorem, Informally)
Every NP language has a PCP where the verifier reads only a constant number of bits of the
proof, to gain constant soundness.

The intuition is for the prover to commit the entire proof, the verifier checks certain bits, and the
prover opens commitments.

The problem with this is that the first round message is not succinct (the commitment is just as
long).

§14.2 Merkle Tree Commitment Scheme

Instead of committing linearly, we’ll use a Merkle Tree, and only send the commitment/hash of
the root node. We build up a binary tree where each node is the hash of its branches. Opening
particular bits, the prover will send the root-to-leaf path along with siblings to prove that this
opening was correct. This size will grow logarithmically with the size of the tree.

We hash values in a tree format, with each parent node being the hash of its children. We only
send the root note. Whenever the verifier requests a certain bit, we send the path from the root to
the bit (revealing all hashes, and siblings) to verify that this is indeed.

It’s very difficult to change any bit. If we changed a bit, at some point up the path of the tree
we’ll have found a collision for a hash. That is to say, a specific bit being correct is predicated on
whether the path to the root is valid and the root hash matches.

Can we make this hiding? Right now, we don’t guarantee the hiding property. If we only had one
layer, every bit would be revealed. How can we modify this algorithm to ensure that each bit is
hiding?

119

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

One solution would be to add a random string r as a sibling to every leaf. However, this would
require us to reveal all siblings when we’re verifying a certain leaf node. We can easily modify this
to salt every leaf node. We can add some random ri to the hash of every bit that hides those bits.

Now, instead of sending a commitment of the entire proof, we send a Merkle Tree of the commitment
of the proof. Then, when requested for certain bits i, j, k, we’ll open those commitments as paths
on the tree.

Is this zero-knowledge? Note that in the PCP theorem, we did not have the zero-knowledge property.
Our solution is that when opening commitments, we can instead provide ZK proofs for our ‘reveals’
instead of the actual bits themselves. Asymptotically, this still preserves our succinctness property.

Theoretically, this lets us construct zk-SNARGs. In practice, there are more efficient ways to
construct them, but we will not cover them now.

§14.3 Anonymous Transactions on Blockchains

We think of the blockchain as a public ledger. Say Alice wants to send 2 Bitcoin to Bob, Alice will
sign the transaction using her signing key and add that transaction onto the ledger. All transactions
are public, you know which addresses sent to which addresses. The public nature of the ledger
allows all parties to verify transactions.

The blockchain is maintained, in a distributed way, by many parties called "miners." Each block
contains a chain of transactions;

Alice’s Account A Bob’s Account B

vkA (public), skA (private) 2BTC (Bitcoin) vkB (public), skB (private)

Transaction

σ = SignskA
(vkA, vkB , 2 BTC) σ

Anonymous Transaction

Com(σ)

NIZK: valid transaction

There’s a lot of work to make transactions anonymous. We’ll hide a transaction and hide it, and
use a NIZK to prove that it is a valid transaction. We want these proofs to be non-interactive and
succinct (we don’t want users to spend too long doing verification). This is a major application of
SNARK and zk-SNARK

120

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§14.3.1 Byzantine Agreement

Imagine a network where we have n nodes and t faulty nodes. How can we get them to agree?
Byzantine Fault Tolerance (BFT) Protocol states that if n ≥ 3t+1 it is possible to reach concensus.
However, we must assume t < n/3 - if we do, we can agree that the next block on the blockchain is
a valid block.

In a permissionless protocol like Bitcoin, this is an issue - since anyone can become a node (i.e.,
become a miner), how do we ensure an honest majority, where an adversary cannot overrun the
system with fake nodes? Bitcoin solves this problem with a concept called proof of work. Every
node must use computation power to contribute to the blockchain.

In practice, the way this works is as follows: in order to find a block, the block (with some nonce)
and the previous hash is hashed. Whichever node finds a block which can cash to a value with
more than 30 leading zeros ’wins’, and that block becomes the next one. This is a problem of raw
computation and luck.

Why would miners want to devote massive amount of computation towards a game of luck? For
Bitcoin, every transaction has some transaction fee. When a miner includes a transaction in a block
that it solves, it gets that transaction fee. Furthermore, every block generates some new coin, which
the winning miner also gets. In practice, miners often pool their computation into mining pools,
which distibute the risk and reward across the mining pool.

121

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§14.3.2 Longest Chain Rule

It is possible for two miners to compute two valid blocks at roughly the same time, which can cause
nodes to get out of sync. Bitcoin solves this issue with the longest chain rule, which states that a
node should always use the longest chain. Assuming honest majority of compute, the longest chain
is always valid.

In practice, a block should not be considered valid until a node is confident it is on the longest
chain. This can be assumed to be 6+ blocks deep.

§14.3.3 Extensions to Blockchain

The protocol described above is relevant to Bitcoin. Other protocols are built differently, with
upsides and downsides to each. Other topics you can research (if interested) include:

1. Proof of Stake

2. Anonymous Transactions

3. Smart Contracts

4. Public bulletin

122

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§15 March 17, 2025

In this lecture, we give a brief introduction to Fully Homomorphic Encryption. Then we give
a concrete construction of Somewhat Homomorphic Encryption over Integers. We want to use
more solid assumptions, so we introduce a new assumption called Learning with Errors, which is a
post-quantum assumption, i.e. it is secure against known quantum attacks.

§15.1 Fully Homomorphic Encryption (FHE)

So far, our encryption schemes primarily follow an “all-or-nothing” idea, where if we have the secret
key we can decrypt, otherwise we cannot decrypt.

In Homomorphic schemes, we want to have the additional property that an encryption of an input
x can be evaluated with a function f to get an encryption of the output f(x) without having to
decrypt first.

EvalEnc(x)

f

Enc(f(x))

An additively homomorphic scheme means we can combine Enc(m1) and Enc(m2) to get

Enc(m1 +m2)

as we saw in Exponential ElGamal or Paillier.

Similarly, we can have a multiplicatively homomorphic scheme which means we can combine Enc(m1)
and Enc(m2) to get

Enc(m1 ·m2)

as we saw in ElGamal or RSA.

Fully homomorphic encryption means we can get both Enc(m1 ·m2) and Enc(m1 +m2).

§15.2 Applications

Example 15.1 (Oursourcing Storage & Computation)
Let’s say a client stores some data on a server. A client has data x and key sk. ct← Enc(x) is
sent to the server. If the client wants to run some computation on the server, the client sends
f and the server evaluates ct′ ← Eval(f, ct) and sends ct′ to the client, which gives the client
f(x) without the server knowing x.

123

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Server Client
Data x

Key sk
ct← Enc(x)

ct, f

ct′ ← Eval(f, ct)

ct′

f(x)← Decsk(ct′)

Example 15.2 (Privacy-Preserving Query)
The client wants to make a query to the server, e.g. Google search or GPT-4. However, the
client does not want to reveal what their query is. Thus, the client homomorphically encrypts
their query and the server homomorphically processes the query and sends back the evaluated
ciphertext ct′, so that the client gets the query result and the server does not know the query.

Server Client
Query x

Key sk
ct← Enc(x)

ct

ct′ ← Eval(f, ct)
f can be Search, ML, GPT, etc.

ct′

f(x)← Decsk(ct′)

The function f has a database embedded in it, and outputs D[i] for some location i. How we
build this function will be the focus of project 4 (PIR).

Example 15.3 (Private Information Retrieval (PIR))
In this application (We’ll implement this in the next project!), we have some server with a
database. A client wants to retrieve the i-th element without revealing the index i to the server.

124

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Server Client
Database D Want: D[i] while hiding i from the server

Query: i

Key: sk

ct ct← Enc(i)

ct′ ← Eval(f, ct)
where f(i) = D[i]

ct′

D[i]← Decsk(ct′)

Note two differences from 1-out-of-n OT.

• Security: In 1-out-of-n OT, the server does not want to reveal any information about
their database other than the 1 out of n chosen entry. However, in PIR, we do not
enforce such security. In PIR, we allow that the client may learn something else about
the database from the ciphertext ct′ other than the desired result f(x).

• Efficiency: In 1-out-of-n OT, the server will generate n ciphertexts and send them to
the client. However, in PIR, we want to be more succinct and only send one ciphertext.

A naïve solution is for the server to send the entire database to the client and the client can
just access their desired element. In fact, this is the best we can do information-theoretically.

§15.3 FHE Definition

125

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 15.4 (Homomorphic Encryption)
A (public-key) homomorphic encryption scheme is some

π = (KeyGen,Enc,Dec,Eval)

with respect to some function family F with

• (pk, sk)← KeyGen(1λ).

• ct← Encpk(m) m ∈ {0, 1}.

• m← Decsk(ct).

• ctf ← Eval(f, ct1, . . . , ctn) with f : {0, 1}n → {0, 1} in family F .

Correctness requires that ∀f ∈ F , if ctf ← Eval(f, ct1, . . . , ctn) for cti ← Encpk(mi), then
Decsk(ctf) = f(m1, . . . ,mn). That is, that evaluating functions does indeed give the ciphertext
of the function evaluated on the plaintexts.

CPA security, as we’ve seen before, requires that

(pk,Encpk(m0))
c≃ (pk,Encpk(m1)).

Compactness, that |ctf | ≤ poly(λ), that each ciphertext is bounded by some constant
that is polynomial in λ and fixed for security parameter λ. This is necessary for several
reasons: practically, when outsourcing compute, we want to decrease the netork costs we incur.
Furthermore, this allows us to prevent the ‘loophole’ of evaluations returning itself.

Why do we need compactness? If we just have correctness and CPA security, our current definition
is nearly trivial. For example, if our evaluation just output the tuple (f, ct1, . . . , ctn). To decrypt,
we decrypt each cti individually and apply f on top, and this satisfies our definitions! We need to
add some notion that our ciphertext must stay within some size, and that we’re actually combining
our ciphertexts.

If the family of functions F contains all polynomial sized Boolean circuits, we say that the scheme
is fully homomorphic.

§15.3.1 Constructions

All FHE constructions follow two steps:

1. Somewhat Homomorphic Encryption (SWHE). We’ll see versions over integers, from LWE
(GSW), and from RLWE (BFV).

126

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

2. Then, we bootstrap our SWHE schemes to be fully homomorphic.

§15.3.2 SWHE over Integers

Attempt 1. This is our first attempt is a secret-key scheme:

Our secret key will be odd p.

Remark 15.5. Why must p be odd? If p is even, then the ciphertext p · q +m has the same parity as
m. The message is not secure because we can find it just by checking even/odd. If p is odd, then p · q
can be either even or odd, so the parity of the ciphertext is not solely determined by parity of m.

• To Enc(m) with m ∈ {0, 1}, we sample a random q and compute ct = p · q +m. Encryption
of 0 is a multiple of p.

• Decryption is ct mod p.

• Add: ct← ct1 + ct2.

• Multiply: ct← ct1 · ct2.

Is this CPA secure? No! If we have a lot of encryptions of 0s, taking the gcd of them will give us p
exactly.

Attempt 2. Our next attempt is to add a small error noise.

• To encrypt, instead of ct = p · q +m, we’ll do

ct = p · q +m+ 2e

for small even 2e with e≪ p. Encryption of 0 is small and even modulo p.

• Then, decryption becomes Dec(ct) = [ct mod p] mod 2.

• Addition and multiplication work the same way. Check that the decryption gives the correct
result by modding p then modding 2. If

ct1 = p · q1 +m1 + 2e1

ct2 = p · q2 +m2 + 2e2

then

ct1 + ct2 = p(q1 + q2) + (m1 +m2) + (2e1 + 2e2)

ct1 · ct2 = pq1(pq2 +m2 + 2e2) +m1 · pq2 +m1 ·m2

+m1 · 2e2 + 2e1(pq2 +m2 + 2e2)

127

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Attempt 3. We can also construct a public key version of this, where the secret key is still our
odd p but the public key are a set of encryptions of 0, {xi = p · qi + 2ei}.

Since our scheme is homomorphic over addition, we can take a random subset sum of {xi} and add
m and 2e:

• To encrypt, we’ll do
ct = (subset sum of {xi}) +m+ 2e

for small even 2e with e≪ p. Encryption of 0 is small and even modulo p.

• Then, decryption becomes Dec(ct) = [ct mod p] mod 2.

• Addition and multiplication work the same way.

What could go wrong? Note that this is still only a somewhat homomorphic encryption scheme. Are
there limits to how much we can add or multiply? Specifically, could the noise grow to an extent
that interferes with our encryption?

1. If we add ciphertexts, our noise grows linearly:

ct1 = p · q1 +m1 + 2e1

ct2 = p · q2 +m2 + 2e2

ct1 + ct2 = p · (q1 + q2) + (m1 +m2) + 2(e1 + e2)

2. If we multiply ciphertexts, our noise grows exponentially:

ct1 · ct2 = p · (· · ·) + (m1 ·m2) +m1 · 2e2 + 2e1m2 + 4e1e2

Addition is cheaper, but multiplication has our noise grow much much faster. In our parameters, we
can support roughly O(λ) multiplications, but addition is almost for free (we can do exponentially
many additions).

This is why this is somewhat homomorphic encryption—if the noise exceeds p, then it might affect
the plaintext.

This analysis works similarly for public-key encryption31.

Note that this protocol is quite expensive—p and q will tend to get quite large. We’ll pivot into
lattice-based cryptography which will solve some of these issues.

31In fact, we took a very generic way of converting the secret-key scheme into a public-key scheme. We can always
take subset sums of encryptions of 0 and add it to our message.

128

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§15.4 Learning With Errors (LWE) Assumption

We’ll introduce a new assumption, and which is assumed to be post-quantum secure. There is no
known quantum algorithm to solve this in polynomial time.

We have security parameter n, and q ∼ 2n
ϵ for constant ϵ. m = Θ(n log q). We have some

distribution χ which is a distribution over Zq concentrated on “small integers”. For example, this
can be Gaussian.

We require that for e←$ χ,
Pr[|e| < α · q] ≃ 1

with α≪ 1. That is, the probability that our error deviates significantly from 0 is negligible.

The assumption states the following: sampling a random matrix A
$← Zm×n

q and randomly sample

a vector s
$← Zn

q with error e
$← χm. We have

b := A× s+ e

The computational assumption is that

(A, b)
c≃ (A, b′)

for b′
$← Zm

q . That is, (A, b) is indistinguishable from a truly random (A, b′).

Why do we need the error term e? Without e, in our equation

b := A× s

, is it possible to solve for s

129

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§16 March 19, 2025

This lecture, we will continue the Learning with Errors assumption, which is assumed to be a
post-quantum assumption. We will see an encryption scheme using this assumption called Regev
Encryption. Then we will see another homomorphic encryption scheme called BFV. We put this all
together for our next project on Private Information Retrieval (PIR).

§16.1 Learning With Errors (LWE) Assumption

Recall the Learning with Errors (LWE) assumption from the previous lecture, which is assumed to
be post-quantum secure. There is no known quantum algorithm to solve this in polynomial time.

We have security parameter n, and q ∼ 2n
ϵ for constant ϵ. m = Ω(n log q). We have some

distribution χ which is a distribution over Zq concentrated on “small integers”. For example, this
can be Gaussian.

αq

We require that for e←$ χ,
Pr[|e| < α · q] ≃ 1

with α≪ 1. That is, the probability that our error deviates significantly from 0 is negligible.

The assumption states the following: sampling a random matrix A
$← Zm×n

q and randomly sample

a vector s
$← Zn

q with error e
$← χm. We have

b := A× s+ e

The computational assumption is that

(A, b)
c≃ (A, b′)

for b′
$← Zm

q . That is, (A, b) is indistinguishable from a truly random (A, b′).

130

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

× =

A s be

+

A b′

←$ Zm
q

Remark 16.1. What if we do not add the e vector? Then it is easy to distinguish (A, b) from (A, b′),
since in this case (A, b) satisfies a linear system As = b. This can be solved, e.g. using Gaussian
elimination.

§16.2 Lattice-Based Cryptography

Definition 16.2
Given a basis B = {b1, . . . , bn}, a lattice L(B) is defined as the set

L(B) :=

{
n∑

i=1

αibi|αi ∈ Z

}

b1

b2

Given the basis of a lattice, the Shortest Vector Problem (SVP) would be to find the vector in
the lattice with the shortest length. This is a problem that is known to be hard and post-quantum,
i.e. there is no quantum algorithm that can solve it easily.

131

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In crypto, we want average-case hardness, and worst-case hardness may not be sufficient. If we only
know worst-case hardness, it might be possible for polynomial attacks to work on average. For
example, 3-SAT is known to be hard in the worst case, but there are practical 3-SAT solvers that
can solve it easily on average.

Lattice problems are nice because there is a reduction from worse-case hardness to average-case
hardness. In other words, if you can solve it easily in the average-case, you can solve it in the
worst-case.

It has been shown that solving SVP can be reduced to solving LWE. In other words, if we could
solve LWE, we could solve SVP. Since SVP is hard, cryptographers settled on LWE being hard, and
used LWE to construct encryption schemes.

Remark 16.3. There is no known attack on LWE, even with the help of quantum computers. This
problem is relatively new, only introduced in 2009. There is still much work going on to study this
problem more, but it is generally accepted that LWE is hard.

Much research is being done in industry and research to better establish post-quantum cryptography
and bring them into practice before quantum computers become advanced enough.

§16.3 Post-Quantum Encryption: Regev

Next, we will use LWE to make a symmetric-key encryption scheme called Regev.

• Gen(1n) : Randomly sample s←$ Zn
q then output sk = s.

• Encsk(µ) : Given a message µ ∈ {0, 1}, randomly sample a←$ Zn
q and e← χ. The ciphertext

is
c = (a, ⟨a, s⟩+ e+ µ · ⌊q/2⌋)

• Decsk(c) : We are given a ciphertext in the form of (a, z). Then

z − ⟨a, s⟩ = e+ µ⌊q/2⌋

Since e is small (by definition of χ), this quantity is close to µ⌊q/2⌋. If µ = 0, it is close to 0,
otherwise it is close to q/2. Thus, by rounding we can decrypt the message.

You can think of the encryption as taking the first row a of A in our LWE setup. If z is the first
entry of b plus µ⌊q/2⌋, then the ciphertext is c = (a, z). Then, by the LWE assumption, this is
computationally indistinguishable from a random element.

132

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

× =

A s be

+

a +µ⌊q/2⌋ = z

We can do this encryption for an arbitrary number of encryptions by letting a be a subsequent row
in A. We can do this up to m times until we exhaust the number of rows in A to keep the LWE
assumption.

CPA Security. By LWE assumption, the ciphertext (a, z) is indistinguishable from a random
group element.

Additive Homomorphism: We can get additive homomorphism by simply adding the ciphertexts
together. The scheme does not support multiplicative homomorphism out of the box (it can,
however be achieved with matrices).

c1 = (a1, ⟨a1, s⟩+ e1 + µ1 · ⌊q/2⌋)
c2 = (a2, ⟨a2, s⟩+ e2 + µ2 · ⌊q/2⌋)

=⇒ c1 + c2 = (a1 + a2, ⟨a1 + a2, s⟩+ (e1 + e2) + (µ1 + µ2) · ⌊q/2⌋)

Public-Key Version: This symmetric-key encryption scheme can be easily turned into a public-key
encryption scheme. Use the scheme to encrypt 0 for an arbitrary number of times λ, then let the
public key be collection of these encryptions.

pk = (Encsk(0) . . .Encsk(0)︸ ︷︷ ︸
λ

)

If you take the sum of all lambda encryptions, we still get an encryption of 0 by additive homomor-
phism. To encrypt a message µ, take a random subset-sum of pk (i.e. take a random subset of pk,
then take its sum), then add µ · ⌊q/2⌋.

§16.4 Ring LWE (RLWE) Assumption

We also have an LWE assumption on rings32. We consider a polynomial ring

R = Z[x]/(xm + 1)

32A ring is a set of elements with two operations · and + and certain properties. You can read more here. Essentially,
they are like integers, there’s multiplication and addition, both have identity, and associative. Addition commutes
and multiplication commutes if we are in commutative ring. There is additive inverse and we have distribution.
There is no inverse for multiplication!

133

https://en.wikipedia.org/wiki/Ring_(mathematics)

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

where m = 2k. This is all polynomials with integer coefficients modulo (xm + 1). We might also
consider

Rq = Zq[x]/(x
m + 1)

which are all polynomials with integer coefficients modulo q and (xm + 1).

We also consider a “noise” distribution χ over R.

The assumption is that for a
$← Rq, s

$← Rq (or s← χ), e← χ, then

(a, [a · s+ e]q)
c≃
(
a, b

$← Rq

)
which is to say that a · s+ e is computationally indistinguishable from random.

§16.5 SWHE from RLWE (BFV)

Our plaintext space will be Rt = Zt[x]/(x
K + 1) and ciphertext space Rq ×Rq, with t≪ q. Define

∆ :=
⌊ q
t

⌋
.

We set up a
$← Rq, s← χ, e← χ as above. We have keys

pk = ([−(a · s+ e)]1, a)

sk = s

Encryption. To encrypt Encpk(m): m ∈ Rt
33. We sample u, e1, e2 ← χ. Then

c = ([pk0 · u+ e1 +∆ ·m]q, [pk1 · u+ e2]q) = (c0, c1)

Decryption. To decrypt Decsk(m):

[c0 + c1 · s]q = −(���a · s+ e) · u+ e1 +∆ ·m+ (���a · u+ e2) · s
= −e · u+ ee1 +∆ ·m+ e2 · s
= [∆ ·m+ small polynomial mod q]q

Note that e, e1, e2 and s are all small, so other terms become small. We see which multiple of⌊ q
t

⌋
this value is closest to in order to recover m (do this coefficient-wise).

Homomorphism. We have homomorphisms

[c(1)(s)]q = ∆ ·m1 + e1

[c(2)(s)]q = ∆ ·m2 + e2
33This is good! We can pack multiple messages into this polynomial by taking each coefficient as segments of the

message. We can pack them into coefficients:

f(x) = ak−1x
k−1 + ak−2x

k−2 + · · ·+ a0

or can pack in other ways, such as f(0) = m0, f(1) = m1, · · · .

134

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Additive Homomorphism. Just adding,

[c(1)(s) + c(2)(s)]q = [∆ · (m1 +m2)n+ e1 + e2]q

Multiplicative Homomorphism? Let’s just try (naïvely) to multiply (we multiply outside the mod
q ring)

c(1)(s) · c(2)(s) = (∆ ·m1 + e1 + α1 · q)(∆ ·m2 + e2 + α2 · q)
= ∆2m1m2 +∆m1e2 +∆m1α2q + e1 ·∆m2

+ e1e2 + e1α2q + α1q∆m2 + α1qe2 + α1α2q
2

Note the term we want has a coefficient of ∆2, but that is the only m1m2 term here, so we
try to divide by ∆.

c(1)(s) · c(2)(s) · 1
∆

= ∆m1m2 + small +
α1α2q

2

∆

but we still don’t have a final small term. Instead of using ∆ exactly, we’ll divide by q
t exactly.

c(1)(s) · c(2)(s) · t
q
≈ ∆m1m2 + small +

α1α2q
2

q/t︸ ︷︷ ︸
small now yay

= ∆m1m2 + small

We have one final step which is that our degrees of polynomials don’t add up now.

§16.6 Relinearization in SWHE from RLWE

We have polynomial

[c(s)]q = c0 + c1 · s+ c2 · s2 = ∆ ·m+ e

and we want to get rid of the s2 term, yielding

[c′(s)]q = c′0 + c′1 · s+ = ∆ ·m+ e

The intuition of what we will do is to provide an encrypted version of s2 and we can remove it
homomorphically. This is called a relinearization key.

The relinearization key will be

rlk =
(
[−(a · s+ e+ s2)]q, a

)
and so [rlk(s)]q = −s2 + small. This leaves us with

c(s) + c2 · rlk(s) = c0 + c1 · s+ c2 · s2 + c2 · (−s2 + small)

but there is a small issue, because c2 might not be small!

135

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

What we do instead is to consider a bit decomposition of c2, and to provide multiple relinearization
keys, one for each bit of c2. In simpler terms, we split c2 into bits and multiply each RLK with the
ith bit. Afterwards, we add up these small products.

rlki = ([−(a · s+ e+ si · s)]q, a)

and rlk(s) = −2i · s+ small. Then,

c(s) +

|c2|∑
i=1

rlki(s) · c2[i]

gives us c0 + c1 · s+ small.

It’s cheaper to do addition because the error grows linearly, instead of multiplication which
grows exponentially. Decomposing s into its binary representation makes it an addition of small
multiplications.

Multiplication, in summary, will require a relinearization step to make our ciphertext linear again.

136

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§17 March 31, 2025

§17.1 Fully Homomorphic Encryption (FHE)

Earlier, we discussed additive and multiplicative homomorphism.

An additively homomorphic scheme can combine Enc(m1) and Enc(m2) to get

Enc(m1 +m2)

as we saw in Exponential ElGamal or Paillier.

A multiplicatively homomorphic scheme can combine Enc(m1) and Enc(m2) to get

Enc(m1 ·m2)

as we saw in ElGamal or RSA.

Additionally, we want Homomorphic Scalar Multiplication. Given a scalar c and an encryption
Enc(m), combine them to get Enc(cm). Naively, we can achieve this by encrypting c and use
multiplicative homomorphism on Enc(c) and Enc(m). However, this is not always necessary. In
fact, most of the encryption schemes that we have seen so far do not require this, and can achieve
homomorphic scalar multiplication much more efficiently.

§17.2 Private Information Retrieval (PIR)

Consider a database stored on a server, for which we want to do privacy-preserving queries. A
trivial solution, where the data is stored as a vector of size n, would have communication complexity
of n. Thus, we store the database as a 2D-matrix. Say the client wants to query D[x, y]. The client
will send ct

(1)
i ← Enc(0) if i ̸= x, or ct

(1)
x ← Enc(1). Similarly for the y coordinate.

Then, the server will compute

ct′ ←

√
n∑

i,j=1

D[i, j] · ct(1)i · ct
(2)
j

and sends ct′ back.

D[x, y] = Dec(ct′). This achieves query in O(
√
n) communication complexity, with 1 homomorphic

multiplication and 1 homomorphic scalar multiplication.

D
ctj

cti

137

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Server Client
Database D, a square matrix Want: D[x, y] while hiding (x, y)

from the server

ct(1)1 ← Enc(0) ct(2)1 ← Enc(0)

...
...

ct(1)x ← Enc(1) ct(2)y ← Enc(1)

...
...

ct(1)√
n
← Enc(0) ct(2)√

n
← Enc(0)

ct′ ←

√
n∑

i,j=1

D[i, j] · ct(1)i · ct
(2)
j

(Homomorphic sum, multiplication,
and scalar multiplication)

ct′

D[x, y] = Dec(ct’)

Consider extending this to dimension d. The number of homomorphic multiplications (per entry)
will be d−1 (with 1 homomorphic scalar multiplication), and the number of homomorphic additions
will be n. The communication complexity will be O(d · d

√
n).

Hom. Mult. O((d− 1) · n)
Hom. Scalar Mult. O(n)

Hom. Add. O(n)

Communication O(n1/d · d)

There is a tradeoff between computation and communication—we can save on communication
with a larger d but will require more computation. For higher dimensions, we’ll need to choose
larger noise space and ciphertext space. We should find the ‘sweet spot’ between computation and
communication.

§17.3 FHE Constructions

So far, we only have talked about Somewhat Homomorphic Encryption schemes. They have some
sort of noise/error associated with them. As we try to grow our problems, so will the noise, until
we cannot do more operations. To resolve this, we introduce a technique called bootstrapping.

We begin with a collection of ciphertexts ct1, . . . , ctn, and we want to homomorphically evaluate a
function f on them to get ctf . There may be too much noise on ctf . Our hope is to decrypt ctf to

138

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

get y = f(x), then re-encrypt y to get cty which gives removes the old noise and gives us “fresh”
noise (so the noise does not build up).

y
Dec(y) Enc(y)

yyx
f

{cti}ni=1 ctf cty

One can think of this using a box analogy. The collection of ciphertexts ct1, . . . , ctn acts as a box
that hides the input x. Then homomorphically evaluating f on this box gives us y, which is still
encrypted and thus remains in a box. Then decryption “peels” away the box to uncover y, and
encryption puts a new box that covers y.

The problem is that we need a secret key to decrypt y. To solve this, the secret key is shared by
using another encryption (i.e. putting it into another box), which allows us to decrypt ctf

Step 1. Begin with a collection of ciphertexts ct1, . . . , ctn (which is an encryption of x) and homomor-
phically compute f on them to get ctf (which is an encryption of f(x)). Let this encryption
have public key and secret key (pk1, sk1).

Step 2. Take ctf and encrypt it with a new encryption with public key and secret key (pk2, sk2). This
can be done by considering the binary string of ctf and encrypting the ith bit as ct

(2)
i .

Step 3. Take sk1 and encrypt it with the encryption in the previous step. This can be done by
considering the binary string of sk1 and encrypting the ith bit as c̃t

(2)
i .

Step 4. Do a decryption f ′ = Dec(sk1, ctf), which is homomorphic with respect to the (pk2, sk2)
encryption. This gives us a ciphertext ctf ′ = Encpk2(y).

139

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

y

x{cti}ni=1

ctf

pk1

pk1

y
pk1

pk2

{ct(2)i }ni=1

sk1

sk1
pk2

y
pk2

f

Encpk2

f ′ = Dec(sk1, ctf)

{c̃t(2)i }ni=1

ctf ′

Encpk2

This procedure is called Leveled FHE. We can repeat this for multiple encryptions. Note we are
always encrypting the previous secret key skn−1 with a new public key pkn.

pk1 pk2 pk3 . . . pkn

Encpk2(sk1) Encpk3(sk2) Encpkn(skn−1)

However, this is still not Fully-Homomorphic Encryption. To achieve FHE, we need to use the idea
of encrypting our own secret key using our own public key, i.e. Encpk(sk). There is only one public
key and one secret key. This is a little tricky because there is a “circular” security assumption. This
is the only technique we know to achieve FHE.

There is a lot of research going on to find applications of homomorphic encryption, but people are
more interested in finding how to achieve FHE. So far, bootstrapping is the biggest bottleneck.
Even doing one operation can take hours. However, in a lot of cases, we do not need FHE, and
SWHE is sufficient enough.

140

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§17.4 Outsourcing Computation by FHE

Recall that by using FHE, we can outsource computation for a server to do while preserving the
privacy of the inputs.

Server Client
Data x, Key sk

ct← Enc(x)

ct, f

Public Evaluation
ct′ ← Eval(f, ct)

ct′

f(x)← Decsk(ct
′)

Usually, this procedure is very expensive for the server to compute. Instead of using this, there is
an alternate solution using secure hardware.

§17.5 Outsourcing Computation by Secure Hardware

Imagine that the server, instead of having all of the computations being public, has an encrypted
form of the memory and the CPU. Whatever happens on the server side in the hardware (memory
and CPU) is hidden to the server. The hardware is like a secure enclave. This is known as secure
hardware.

If the client and the secure hardware can agree on a secret key sk that is hidden from the server,
then the server uses the secure hardware to do computation without learning the input. This is
much faster than homomorphic encryption.

141

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Server Client
Data x, Key sk

ct← Enc(x)

Input (ct, f) ct, f

Secure Hardware

x← Decsk(ct)

y := f(x)

return ct′ ← Encsk(y)

Get ct′ ct′ y ← Decsk(ct
′)

§17.5.1 Intel Software Guard Extension (SGX)

How does the client and the secure hardware agree on the secret key? They must do a key exchange
with each other. This is exactly what happens in Intel SGX, also known as “secure enclave”.

Server Client

DH Key Exchange

Enclave

b← Zq

return gb

k := HKDF(gab)

ga a←$ Zq

gb k := HKDF(gab)

Input (ct, f) ct, f

Enclave

x← Decsk(ct)

y := f(x)

return ct′ ← Encsk(y)

Get ct′ ct′ y ← Decsk(ct
′)

142

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Here, the client does a DH key exchange with the secure enclave by sending ga to the server, which
passes it onto the enclave. Then the enclave returns gb, which the server passes onto the client.
However, the is susceptible to a man-in-the-middle attack, where the server is the man-in-the-middle
and can send their own gb

′ to the client instead of gb. To remedy this, we need to use digital
signatures so that the enclave can prove to the client that they are certified by Intel.

Every time when you want to compute some function, you need to generate a new certificate. The
enclave must run a “provisioning” procedure with Intel to receive a new certificate (Intel can charge
you here!) and the client must run some “attestation” procedure (Intel can charge you here!). It
does not have to be as complicated as this, but it is so because there is a business model.

The certificate is also generated on the the function f , so that the client ensures that the enclave is
computing the correct function.

Constraints and Attacks:

1. Need to trust hardware and Intel to do things correctly.

2. Limited memory size: 128 MB

3. Replay attacks: although everything is secure against the server, the server can keep a snapshot
of everything and replay things on a future input.

4. Side-channel attacks: it leaks the memory access pattern. When the CPU in the enclave
will utilize different blocks of memory, and the server can see the pattern in which the CPU
accesses different memory locations. For example, the server might notice that the CPU
accesses the same memory location multiple times, which can reveal something about the
computation. A fix involves something called “Oblivous RAM (ORAM)”, which requires
Θ(logN) memory overhead.

143

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§18 April 2, 2025

§18.1 Hardware Secure Module (HSM)

In Intel SGX, you can do arbitrary computations. However, HSM can only do restricted computations,
for example, encryption/decryption. Alice can have an HSM that encrypts a message and she sends
the encryption to Bob who has an HSM to decrypt the message. Another example is an HSM that
takes in a ciphertext, decrypts it, then re-encrypts it with a new secret key.

This is used in places like Visa and a lot of bank systems. This is because they do not want to store
the key anywhere, so that the user can only interact with the HSM like a black box without seeing
the key.

How does an encrypt/decrypt HSM pai agree on a key? The encrypt HSM (Alice) randomly samples
k1, k2, k3 such that k1 ⊕ k2 ⊕ k3 = k. Then the 3 of them will be mailed to the decrypt HSM (Bob)
using 3 different carriers, and the decrypt HSM will reconstruct the key k on its own.

§18.2 Secure Multi-Party Computation

§18.2.1 2-Party Computation

We’ve seen this before, but it is whensome parties want to compute the output of some function on
their individual inputs, without revealing their own inputs.

Example 18.1
Alice and Bob just returned from a date, and want to figure out if they each want a second
date. Alice has some choice bit x and Bob some choice bit y. They want to jointly compute
f(x, y) = x ∧ y.

Example 18.2
Alice and Bob want to compare riches (who is richer?). They compute

f(x, y) =

{
0 if x > y

1 otherwise

Example 18.3
Alice and Bob meet for the first time and want to see if they have friends in common. They
have sets of friends X,Y , and compute

f(X,Y) = X ∩ Y.

144

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

There are variants of this which only give cardinality of X ∩ Y , etc.

In general, this is when two parties have inputs x, y and want to compute some function f(x, y) on
them.

Use cases include:

• Password breach alert (Chrome/Firefox/Azure/iOS Keychain) runs a set intersection on your
passwords and server leaked passwords.

• Privacy-preserving contact tracing for COVID-19 (Apple and Google). We want to know if
we have contact but not who had contact with.

• Ads conversion measurements/personalized advertising (Google/Meta). We want to match
conversions without either party knowing who converted.

§18.2.2 Multiple Parties!

The general case of this is Secure Multi-Party Computation (MPC)

145

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

This is when we have some parties Pi and want to compute input on f(xi, · · · , xn).

Here are some applications:

• Privacy-preserving Inventory Matching (J.P. Morgan)

• Distributed key management (Unbound/Coinbase)

• Federated learning (used in Google Keyboard Search Suggestion). We want to run machine
learning, federated amongst multiple devices. However, we don’t want to leak the actual
training data from users.

• Auctions (Danish sugar beet auction). Nobody should reveal their bid in the clear.

• Also deployed in Boston area to analyze the wage gap between genders without revealing the
individual salaries.

• Study/Analysis on Medical Data. Every institution has limited data, but they cannot openly
share that data due to regulations. How could they jointly do analysis on this data without
revealing the data.

• Fraud Detection (banks). Users might have cards at multiple banks, they want to jointly
detect fraud but do not want to share their transactions.

When we normally talk about cryptography, we talk about ‘slowing down’ the system (crypto makes
everything slower). In the case of MPC, though, we’ve enabled new features that were not otherwise
possible without these tools.

146

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§18.3 Definition

Our setting is that we have n parties P1, . . . , Pn with private inputs x1, . . . , xn. They want to jointly
compute f(x1, . . . , xn).

In terms of communication infrastructure: we usually assume point-to-point channels between each
pair (pi, pj). We know how to do this (key exchange, authenticated encryption, etc). Sometimes,
we also assume a reliable broadcast channel where every other party gets information.

There is a single adversary that can “corrupt” a subset of the parties (at most t).

What properties do we want out of this system? Here are some common security properties we might
want:

Correctness. The function is computed correctly.

Privacy. Only the output is revealed.

Independence of Inputs. Parties cannot choose their inputs depending on others’ inputs.

Also with security guarantees:

Security with Abort. The adversary may “abort” the protocol. This prevents honest parties from
receiving the output. This is the weakest model.

Fairness. If one party receives the output, then all parties will receive the output.

Guaranteed Output Delivery (GOD): Honest parties always receive output. Even if adversarial
parties leave, the honest parties will simply continue the protocol.

We also have some characterizations of adversaries:

• Allowed adversarial behavior:

– Semi-honest (or passive/honest-but-curious): They follow the protocol description hon-
estly, but they try to extract more information by inspecting the transcript. This is the
weaker model.

– Malicious/active: These adversaries can deviate arbitrarily from protocol description.

• Adversary’s computing power:

– Unbounded computing power: this gives us information-theoretic (IT) security.

– PPT bounded: this gives us computational security.

147

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

If you’re interested, you can look into the literature of how to define security for MPCs. The idea is
similar to that of ZK proofs—everything an adversary can do (see the transcript) can be simulated
by a simulator who only has the input and output.

§18.3.1 Feasibility Results

In the computational security setting, if we have a fundamental building block, a semi-honest
oblivious transfer (OT), we can get semi-honest MPC for any function t < n. At a high level, using
zero-knowledge proofs to enforce correctness of the protocol, we can convert any semi-honest MPC
into a malicious MPC.

In terms of information-theoretic (IT) security. We can also get semi-honest and malicious MPC for
any function with t < n

2 . We call this an honest majority. This is a necessary bound, we cannot do
any better than this.

§18.4 Oblivious Transfer

Definition 18.4 (Oblivious Transfer)
An oblivious transfer is a protocol in which a sender, with messages m0,m1 ∈ {0, 1}l gives a
choice to the receiver to receive either m0,m1.

Given a choice bit from the receiver b ∈ {0, 1}, the receiver gets mb and the sender also gets no
information about the messeage transferred.

We’ll learn about constructions of OT later, but we black-box its implementation until later.

Using a semi-honest OT, we can use Yao’s Garbled Circuit to construct semi-honest 2PC for any
function. We can also use the GMW compiler to compile this into a semi-honest MPC for any
function. We’ll focus on the first approach in this lecture, but we’ll learn GMW in the following
lectures.

148

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§19 April 7, 2025

§19.1 Multi-Party Computation - Big Picture

There are two different levels of MPC: either semi-honest or malicious. Semi-honest means that the
adversary follows the protocol, but tries to extract more information. Malicious means that the
adversary deviates from the protocol to extract information.

If we have an oblivious transfer (OT) that is secure against semi-honest adversaries, we can use
it with Yao’s garbled circuit to achieve semi-honest 2-party computation for any function. Then,
with the cut-and-choose with commitments, we can achieve malicious 2-party computation. We will
discuss this next.

Semi-honest OT =⇒
Yao’s Garbled Circuits

Semi-honest 2PC for any function

=⇒
Cut-and-choose with commitments

Malicious 2PC for any function

In the last part of this lecture, we will discuss how to use semi-honest OT with GMW to achieve
semi-honest multi-party computation, which can be extended to malicious MPC.

Semi-honest OT =⇒
GMW

Semi-honest MPC for any function

=⇒
GMW Compiler with ZKP

Malicious MPC for any function

Recall the definition of Oblivious Transfer.

149

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 19.1 (Oblivious Transfer)
An oblivious transfer is a protocol in which a sender, with messages m0,m1 ∈ {0, 1}l gives a
choice to the receiver to receive either m0,m1.

Given a choice bit from the receiver b ∈ {0, 1}, the receiver gets mb and the sender also gets no
information about the message transferred.

Sender Receiver

Input: m0,m1 ∈ {0, 1}ℓ Input: b ∈ {0, 1}

Output: ⊥ Output: mb

§19.2 GMW

There is another method of multi-party computation that does not used garbled circuits called the
Goldreich-Micali-Wigderson (GMW) protocol.

Throughout the protocol, we keep the invariant that for each wire w, if the value of the wire is
vw ∈ {0, 1}, then the parties hold an additive secret share of vw. Each party Pi holds a random
share vwi ∈ {0, 1} such that

n⊕
i=1

vwi = vw

and we keep this invariant throughout the entire circuit. 34

We need to be able to preserve this invariant throughout AND and XOR gates. The XOR case is
easy, since XOR is completely commutative and associative, so each party can locally XOR their
shares ci := ai ⊕ bi for c := a⊕ b.

We’ll address the AND case later, but we can do this. We’ll proceede gate-by-gate for everyone to
compute the result. Each party will publish their local shares, and everyone will XOR the result
together to get the final result.

Remark 19.2. (Frequently asked) Why do we only consider AND and XOR gates? This is because
every other gate (NOT, OR, NAND) can be constructed using only AND and XOR gates. Gates like
this are considered complete.

34Recall that ⊕ means addition modulo 2. You can check that this also gives the XOR operation.

150

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§19.2.1 AND Gates

We now address the AND gates. We have
⊕n

i=1 ai = a and
⊕n

i=1 bi = b.

We want a set of {ci} s.t.
⊕n

i=1 ci = c = a · b (multiplication of bits is AND). But

a · b =

(
n∑

i=1

ai

)
·

(
n∑

i=1

bi

)
(mod 2)

=

(
n∑

i=1

ai · bi

)
+

∑
i̸=j

ai · bj

 (mod 2)

The first sum is easy and computed locally, but the second sum requires parties to communicate.
We do something called resharing.

Goal: Between Pi, Pj , we want random ri, rj ∈ {0, 1} such that ri + rj = ai · bj (mod 2).

Pi will randomly sample ri
$← {0, 1}. We can use OT to allow Pj to learn rj such that ri+rj = ai ·bj

(mod 2) without revealing ai or ri.

Pi will be the sender, Pj is the receiver. Pj ’s choice bit is bj . Then the messages will be

m0 = (ai · 0)− ri = ri mod 2

m1 = (ai · 1)− ri = ai + ri mod 2

such that ri, rj are two shares of ai · bj .

Party i Party j
Input: ai ∈ {0, 1} Input: bj ∈ {0, 1}
ri ←$ {0, 1}
Prepare both possibilities for rj

Use OT with choice bit bj

Receive rj

Output: ri ∈ {0, 1} Output: rj ∈ {0, 1}

§19.2.2 Complexities

Computational complexity is O(#AND · n) for each party, since each XOR gate takes constant
number of operations and each AND gates requires a constant number of operations for each other
party.

151

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

For communication complexity, each party needs to communicate to every other party for every
AND gate. For each XOR gate, we do not need to communicate. So the communication complexity
is O(n ·#AND) per party.

The round complexity is the depth of the AND gates in circuit. Each party needs to communicate
to every other party for each AND gate, but some of these AND gates can be done in parallel (if
they do not depend on each other). Thus, the round complexity is O(depth of AND gates).

Computational Complexity O(#AND · n) per party
Communication Complexity O(n2 ·#AND)

Round Complexity O(depth of AND gates)

152

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§20 April 9, 2025

This lecture we discuss semi-honest 2PC with Yao’s garbled circuits and construction of oblivious
transfer.

§20.1 Adversary Powers

We can rank the strength of our protocols by the adversaries that they defend against. Consider
the following adversaries:

• Semi-honest/passive/honest-but-curious: follows the protocol description honestly, but
tries to extract more information by inspecting the transcript/metadata.

• Malicious/active: can deviate arbitrarily from the protocol description.

§20.2 Yao’s Garbled Circuit for Arbitrary function

Let’s say Alice (Garbler) and Bob (Evaluator) want to jointly compute an arbitrary function,
represented by a series of boolean gates. In this series of boolean gates, there are input wires,
intermediate gates, and output wires. Alice has two input wires (red) and Bob has two input wires
(blue). Their inputs are known to themselves and do not want to be revealed, but they want to
jointly compute the output.

153

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

For each wire (a-g), Alice will sample two random 128-bit strings k0 and k1. Alice will create a
garbled table for each gate that consists of 4 ciphertexts that corresponds to the gate logic. For
example, the table at the bottom of the diagram corresponds to the AND gate where each entry is
Encx(Ency(x AND y)), where x, y are the strings k0, k1 corresponding to each input wire.

Bob will get one label per wire, so then he will be able to decrypt exactly 1 out of 4 ciphertexts in
the table.

This occurs for each gate. Alice will send a garbled gate (garbled table) for each gate. For the
labels that belong to Alice, she will send both to Bob. Then we allow Bob to choose his input labels
using oblivious transfer. This allows Bob to compute the output of a gate without Alice or Bob
learning each other’s input. Once an output for an intermediate gate is computed, we repeat the
process to evaluate later gates.

In order to ensure that one does not learn the other’s inputs, we must shuffle the garbled table.
The plaintext is concatenated with a series of 0s before being encrypted.

§20.3 Oblivious Transfer

Up to this point, we have black boxed the implementation of OT.

We’ll go over the implementation of semi-honest OT here. It will follow similarly to the Diffie-Hellman
key exchange.

154

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The sender will send A = ga. The receiver will mask Ac with c ∈ {0, 1} and b
$← Zq. a, b here are

like Diffie-Hellman privates.

Then, the sender will compute k0 := H(Ba), k1 := H
((

B
A

)a). This means that kc will be exactly

gab = Ab (whether c = 0 or c = 1). Then, k0 and k1 will be used to encrypt m0,m1 respectively.

Since only one will be the shared Diffie-Hellman key (and the other will require knowledge of a),
the receiver will only be able to reveal one such message.

Doing out the algebra, we can conclude that the receiver can access the key.

Is this secure against a semi-honest receiver? If the key is c = 0, then the other key will be gab−a2 .
ga

2 is difficult to compute, since the receiver only has A = ga and will need secret a to compute

155

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

ga
2 .35 If c = 1, then the other key will be ga

2+ab which is hard again. So, for the receiver, it is
computationally secure.

Is this secure against a semi-honest sender? gb is a random mask on Ac, so the sender will not be
able to distinguish between this.

§20.3.1 OT Extension

We used public-key operations to achieve our OT. Is it possible to construct OT only using
symmetric-key primitives? Unlikely. . .

There are impossibility results that show that if we assume P ̸= NP, it’s not possible to construct
an OT using symmetric-key primitives.

This makes OTs very difficult—since it takes an entire protocol (including expensive exponentiations)
to transfer one bit. There has been current research in extending OT so we can use more bits.

An OT extension can extend O(λ) OTs (with O(λ) public-key operations) into a poly(λ) bit OTs.

§20.4 Putting it Together: Semi-Honest 2PC

We can now construct our 2PC protocol. Alice, the garbler, will create the circuit with garbled
inputs and wires (shuffling order of ciphertexts). Alice sends this circuit to Bob, and Bob will use
OTs with his input bits to get the wire labels that he should use. Then, Bob runs these labels on
the garbled circuit.

35Formally, this security is guaranteed by the CDH assumption, that if we have gα, gβ , it’s computationally hard to
determine gαβ . If an adversary can derive gα

2

from gα, they can also derive gαβ . We can get gα
2

, gβ
2

, then we
can get g(α+β)2 = gα

2+2αβ+β2

and taking inverses we can peel off the α2, β2 exponents to get gαβ .

156

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In the semi-honest case, Alice will generate this circuit correctly and Bob will follow the protocol
correctly. What could go wrong against malicious adversaries?

• Alice could garble an incorrect gate, or give an entirely incorrect circuit.

• Alice could refuse to send the result (translate output label to bits) back to Bob, or send an
incorrect result to Bob. If the outputs are not garbled, then Bob could similarly refuse to
send this back to Alice.

• Alice and Bob could both cheat about their inputs.

157

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§21 April 14, 2025

This lecture we discuss optimizations of garbled circuits, construction of oblivious transfer, semi-
honest 2PC, and cut-and-choose for garbled circuits.

§21.1 Oblivious Transfer

Recall the definition of Oblivious Transfer.

Definition 21.1 (Oblivious Transfer)
An oblivious transfer is a protocol in which a sender, with messages m0,m1 ∈ {0, 1}l gives a
choice to the receiver to receive either m0,m1.

Given a choice bit from the receiver b ∈ {0, 1}, the receiver gets mb and the sender also gets no
information about the message transferred.

Sender Receiver

Input: m0,m1 ∈ {0, 1}ℓ Input: b ∈ {0, 1}

Output: ⊥ Output: mb

§21.2 Yao’s Garbled Circuit for Arbitrary function

Let’s say Alice (Garbler) and Bob (Evaluator) want to jointly compute an arbitrary function,
represented by a series of boolean gates. In this series of boolean gates, there are input wires,
intermediate gates, and output wires. Alice has two input wires (red) and Bob has two input wires
(blue). Their inputs are known to themselves and do not want to be revealed, but they want to
jointly compute the output.

158

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

For each wire (a-g), Alice will sample two random 128-bit strings k0 and k1. Alice will create a
garbled table for each gate that consists of 4 ciphertexts that corresponds to the gate logic. For
example, the table at the bottom of the diagram corresponds to the AND gate where each entry is
Encx(Ency(x AND y)), where x, y are the strings k0, k1 corresponding to each input wire.

Bob will get one label per wire, so then he will be able to decrypt exactly 1 out of 4 ciphertexts in
the table.

This occurs for each gate. Alice will send a garbled gate (garbled table) for each gate. For the
labels that belong to Alice, she will send both to Bob. Then we allow Bob to choose his input labels
using oblivious transfer. This allows Bob to compute the output of a gate without Alice or Bob
learning each other’s input. Once an output for an intermediate gate is computed, we repeat the
process to evaluate later gates.

159

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

In order to ensure that one does not learn the other’s inputs, we must shuffle the garbled table.
The plaintext is concatenated with a series of 0s before being encrypted.

§21.2.1 Optimizations

There are some optimizations we can make:

Point-and-Permute. For each wire, we’ll randomly sample signal bits σα, σβ , and flip it for the other
input. (Note that this doesn’t reveal anything about α, β). In the circuit, we can indicate using the
signal bit which ciphertext to decrypt.

We reduce Bob’s computation complexity by at least a constant of 4, and saves communication
complexity by half (we don’t need to expand our garbled circuit size anymore).

160

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Free XOR. Sample a global ∆ $← {0, 1}λ. Every pair of labels differ by ∆. That is,

α1 := α0 ⊕∆

β1 := β0 ⊕∆

γ1 := γ0 ⊕∆

and γ0 = α0 ⊕ β0. To compute the output label, you just perform the XOR plainly.

This is to say, XOR is free. We don’t need to send labels and Bob doesn’t need to encrypt/decrypt.

We can also use half-gates which give us 2λ bits per AND gate + free XOR. A recent development,
slicing-and-dicing, gives us around ∼ 1.5λ bits per AND gate + free XOR.

§21.3 Comparing Yao’s and GMW

In summary, we have learned two different approaches to semi-honest 2PC: Yao’s Garbled Circuits
and GMW. Both have their own use cases, efficiencies, and tradeoffs.

Yao’s provides semi-honest 2PC for any function, while GMW provides semi-honest MPC for any
function.

Yao’s has a constant number of communication rounds, whereas the number of communication
rounds required for GMW scales with the depth of AND gates. Thus, deeply nested circuits with
many AND gates can be more expensive in GMW.

Furthermore, Yao’s only works for boolean circuits, while GMW works for both boolean and
arithmetic circuits.

161

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§22 April 16, 2025

In the previous lecture, we finished our discussion of Yao’s Garbled Circuits and GMW. In practice,
we may want to consider the exact function the we are computing in MPC to enable more efficient
protocols. We will discuss an example of this known as Private Set Intersection. We will also briefly
look at privacy-preserving machine learning.

§22.1 Private Set Intersection (PSI)

Alice and Bob want to compute the intersection of their sets X = {x1, x2, . . . , xn} and Y =
{y1, y2, · · · , yn} without revealing the elements in their set.

• PSI: f(X,Y) = X ∩ Y .

• PSI-Cardinality: f(X,Y) = |X ∩ Y | which counts the number of items in the intersection
without revealing the items.

Applications:

• Password Breach Alert (Chrome, Edge, Firefox, iOS Keychain, ...). There is a set of
all compromised passwords, and a set of user’s passwords, and we want to see if there is
intersection without revealing the passwords.

• Ads Conversion Measurement (Google). Alice is an ad platform and Bob is an advertiser
who has the information of users that have a made a purchase with him. The intersection is
the ad conversion, those users who have seen the ads and made a purchase, which gives an
idea of the effectiveness of the ad.

• Privacy-Preserving Inventory Matching (J.P. Morgan). There is a set of stocks we can
sell, and a set of stocks that a buyer wants to buy. We want to which stocks we can sell to
the buyer.

• Private Database Joins. For example, two companies may want to find out how many
users they have in common.

§22.1.1 Naïve Solution

Here’s a naïve solution: Alice and Bob hash all their inputs, exchange hash values, and see which
ones they have in common. You can learn the intersection, but could you learn more than that?

162

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Alice Bob
Input: X = {x1, . . . , xn} Input: Y = {y1, . . . , yn}

H(x1), . . . ,H(xn)

Compute intersection between
H(x1), . . . ,H(xn) and
H(y1), . . . ,H(yn)

If the input space is a relatively small space, we can do a dictionary attack (for example, with
names). This is not even semi-honest secure.

Can we even achieve 2PC/MPC with just a single round of communication (as we have done here,
sending hashes one way)? Taking a step back, we receive a message from Alice and can derive the
solution regardless of any y we have. This allows us to just test multiple inputs on the function
received and we’ll receive that output, so we can derive x from that input. Thus, no, we cannot
achieve 2PC/MPC with just a single round.

§22.1.2 DDH-Based PSI

We start with a cyclic group G of order q with generator g, where DDH holds. We also have a hash
function H : {0, 1}∗ → G (modeled as a random oracle).

Alice: Bob:
Input: X = {x1, . . . , xn} Input: Y = {y1, . . . , yn}
a←$ Zq b←$ Zq

H(Y)b := {H(y1)
b, . . . ,H(yn)

b}

H(X)a, H(Y)a·b

Compute the intersection

H(X)a·b ∩H(Y)a·b

Bob and Alice generate private exponents kB
$← Zq, kA

$← Zq respectively. Bob will send

H(Y)kB :=
{
H(y1)

kB , · · · , H(yn)
kB
}

Alice does the same for X, H(X)kA , and sends H(Y)kA···kB . Bob then raises H(X)kA to kB and
compares. In the semi-honest case, for Bob to perform the same dictionary attack, Bob will need to
break DDH in order to raise arbitrary elements y′ to kA · kB.

163

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We can modify this to count cardinality by randomly shuffling the returned H(Y)kA·kB such that
Bob cannot relate the re-encrypted hashes to the previous order.

§22.2 Privacy-Preserving Machine Learning (PPML)

In PPML, there are n parties labeled x1, . . . , xn. Each party has some private data. All parties
want to train a machine learning model and use its inference.

There are two kinds of data partitioning between parties

• Horizontal Data Partitioning is where each party contains all features of a subset of
examples. For example, an institution could have all of the medical information on a subset
of patients.

• Vertical Data Partitioning is where each party knows a certain feature over all examples.
For example, hospitals could hold the medical data, banks hold the financial data, etc.

Currently, the state of the art solution delegates this problem between two central servers instead
of using MPC across n parties. One server gets a secret share D0 of the data and the other server
gets a secret share D1 of the data so that D0 +D1 = D recovers the total dataset. This is known
as 2PC, and people have also looked into 3PC with 1 corruption, 4PC with 1 corruption, which can
be more secure and efficient. As of 2025, PPML is not widely used in practice, but it is a field of
study with a lot of interest in cryptography.

§22.2.1 Linear Regression

In linear regression, given data points (x⃗, y), our ML model is

g(x⃗) = ⟨x⃗, w⃗⟩

where w⃗ is the coefficient vector which will be adjusted during training. For each data point (x⃗i, yi),
we define the loss function as

Li(w⃗) :=
1

2
(⟨x⃗i, w⃗⟩ − yi)

2.

The total loss is given by L(w⃗) := 1
N

∑N
i=1 Li(w⃗). This tells us how bad our coefficient vector w is,

and we want to update w to minimize L(w⃗).

One common method to find w that minimizes the loss is known as Stochastic Gradient Descent
(SGD), which goes as follows. w⃗ is first initialized with an arbitrary value. Then, given a data
point (x⃗i, yi), update w⃗ according to the rule

w⃗ ← w⃗ − η · ∇Li(w⃗)

where η > 0 is the learning rate and ∇Li(w⃗) is the gradient.

164

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

For linear regression, this update rule can be written as follows.

w⃗ ← w⃗ − η · (⟨x⃗i, w⃗⟩ − yi) · x⃗i

Computing y∗i := ⟨x⃗i, w⃗⟩ is forward propagation and computing (⟨x⃗i, w⃗⟩ − yi) · x⃗i is backpropagation.

Let’s say we want to use PPML for linear regression. In PPML, two parties will hold secret shares
of w⃗. Both parties will initially sample w⃗0 and w⃗1 randomly, and w⃗ := w⃗0 + w⃗1. We want the two
parties to run SGD with their secret shares to get a secret share of the updated w⃗. Let’s look term
by term.

• A secret share of ⟨x⃗i, w⃗⟩ can be computed by using resharing. Each party has a secret share
of x⃗i and a secret share of w⃗.

• A secret share of ⟨x⃗i, w⃗⟩ − yi can be computed locally by locally subtracting the secret share
of yi.

• A secret share of (⟨x⃗i, w⃗⟩ − yi) · x⃗i can be computed by resharing.

• Finally, a secret share of w⃗ − η · (⟨x⃗i, w⃗⟩ − yi) · x⃗i can be computed locally, since η is public
and this is only subtraction.

Thus, we can get a secret share of the updated w⃗.

§22.2.2 Logistic Regression

The setup is the same as linear regression, except the ML model is now given by

g(x⃗) = f(⟨x⃗, w⃗⟩)

where f is an activation function. In this scenario, we use the sigmoid function given by

f(u) =
1

1 + e−u
.

The loss function is now given by

Li(w⃗) := −yi · log y∗i − (1− yi) · log(1− y∗i)

where y∗i := f(⟨x⃗i, w⃗⟩). The total loss L(w⃗) is defined the same, and we want to find w⃗ that
minimizes it.

The update rule for SGD then becomes

w⃗ ← w⃗ − η · (f(⟨x⃗i, w⃗⟩)− yi) · x⃗i.

If we want to use PPML for logistic regression, both parties will initially sample w⃗0 and w⃗1 randomly
as before, and w⃗ := w⃗0 + w⃗1. We want the two parties to run SGD with their secret shares to

165

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

get a secret share of the updated w⃗. The update rule for SGD is nearly the same as that in
linear regression, but now we have to figure out how to get a secret share for f(·). This function
is the sigmoid function, which is complicated, involves exponentiation, and is not MPC friendly.
Theoretically, one can do this by representing it as a garbled circuit, but this can be very expensive.
Thus, we will approximated f(·) with the following piecewise polynomial.

f(u) =

0 if u < −1

2

u+ 1
2 u ∈ [−1

2 ,
1
2]

1 u > 1
2

Let

b1 :=

{
1 if u < −1

2

0 otherwise

b2 :=

{
1 if u > 1

2

0 otherwise

Then
f(u) = 0 · b1 + 1 · b2 + (u+

1

2
) · (1− b1)(1− b2)

which is more MPC friendly because it only involves additions and multiplications, which can be
done using resharing. All we need is a secret share of b1 and b2. This can be a little tricky, and
there is not a good way to do it, so we resort to using garbled circuits. However, it is not too bad
since it only involves comparison > and <.

Once we get a reshare for f(u), then the rest is just arithmetic operations that we have done as in
the case for linear regression.

§22.2.3 Neural Networks

In neural networks, each node is a linear function fed into an activation function. Thus, one can
imagine that the work that we have done for linear and logistic regression can go into neural
networks. At a high level, the idea is to look at which functions go into the training the model and
figure out how to make it MPC friendly.

166

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§23 April 21, 2025

In this lecture, we will cover federated learning, differential privacy, elliptic curve cryptography.

§23.1 Federated Learning

In Federated Learning, there is one central server and multiple users. The server wants to train
and use an ML model using private data from the users. One application of this is Google mobile
keyboard prediction.

This is different than PPML, and is a little bit more tricky. We cannot use secret shares because
there is only one server. Furthermore, each user has data, but they might have issues participating
in the protocol due to network issues and so on.

So far, we have used SGD when to look at a single data point i.

w⃗ ← w⃗ − η · ∇Li(w⃗)

We can look at a batch of data points, known as batch SGD.

w⃗ ← w⃗ − η

B
·

B∑
i=1

∇Li(w⃗)

For linear regression, the batch SGD can be written as

w⃗ ← w⃗ − η

B
·XT

B · (XB · w⃗ − YB)

where XB is a matrix with B rows, where the ith row is x⃗i, and likewise YB is a column vector
with B entries, where the ith entry is yi.

In federated learning, the server has the current w⃗ and wants to update it. It will select a batch of
users and jointly compute the aggregation XT

B · (XB · w⃗− YB). Each user can locally compute their
own term, and the server will take the sum of those. This is known as secure aggregation. At a
high level, each user computes a secret share of their local SGD, and the server collects all of these
to sum them up to get the total SGD update.

This also applies to logistic regression, where the batch SGD update rule looks like the following.

w⃗ ← w⃗ − η

B
·XT

B · (f(XB · w⃗)− YB)

Remark 23.1. What are some potential issues in federated learning?

• A user can potentially lie about their local SGD, so it might skew the collective result. In practice,
the total SGD is monitored to ensure that it is reasonable.

167

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

• The aggregated result can potentially reveal private information about the user. There has been
some research investigating the security of federated learning. We can try to add differential
privacy to improve the security, but this is hard to do since it may not be MPC friendly.

What people do now is to use differential privacy only when releasing the current w⃗ to the users.
To compute their local SGD, the users need to know w⃗, and thus need to know the total SGD of
the previous iteration.

There is still a lot of work needed to be done in this area!

§23.2 Differential Privacy

Let’s say that we have a database of sensitive data that we want to make public to others without
compromising individual’s privacy. For example, there might be a database of medical information
that we want to share for medical studies.

Name Age Gender Race Weight ZIP Disease
Alice
Bob

Charlie
David
Emily
Fiona

One attempt to simply anonymize the data by deleting personally identifiable information (PII)
such as the name, date of birth, etc. This might still reveal information about the individual. For
example, if you see “Asian female, age 30, living in Providence” you might guess it might be Peihan!
Although the privacy guarantees may be weak, this is what is being used by HIPAA.

Another attempt is to only answer aggregate statistics queries, for example only answering “How
many people in Providence have this disease?”. We can hope that this reveals less information about
the individual. Unfortunately, we may still be able to infer a lot from these aggregate statistics. A
similar attack actually occured involving Facebook Ads, where an attacker was able to use agregate
queries to profile specific users.

Our goal is that the output shouldn’t enable one to learn anything about an individual. This can
be trivially achieved, for example if the output was 0 regardless of the data. Then the output does
not reveal any private information of the data, but also does not provide much use. Hence, there is
a tradeoff between privacy and correctness/utility.

Instead, our goal is that the output shouldn’t enable one to learn much more about an individual
compared to one with an output computed without the individual.

168

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Definition 23.2
For a database D ∈ X n, let M be a randomized mechanism that takes in D and outputs a
randomized output M(D).

D → M →M(D)

ϵ-Differential Privacy for M states that for all neighboring datasets D1 and D2 (neighboring
means that they differ in exactly one row), and for all T ⊆ range(M), we have

Pr[M(D1) ∈ T] ≤ eϵ · Pr[M(D2) ∈ T].

Intuitively, this states that two neighboring datasets have outputs that have similar probability
distributions. If you apply M on D1, it will give you the red distribution, and if you apply M on
D2, it will give you the blue distribution. Under the interval T , the two distributions are close.

T

This property can be relaxed with the following definition.

Definition 23.3
ϵ, δ-Differential Privacy for M states that for all neighboring datasets D1 and D2, and for
all T ⊆ range(M), we have

Pr[M(D1) ∈ T] ≤ eϵ · Pr[M(D2) ∈ T]+δ.

If ϵ or δ are large, then this is bad for privacy since the two distributions are allowed to differ
more. The δ helps in cases where the distribution is very close to 0.

An example of a randomized mechanism that is differentially private is called randomized response.

169

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§23.2.1 Randomized Response

Let’s say that we want to find the percentage of individuals that satisfy a predicate P. For example,
the predicate could be “is a MATH-CS concentrator”. Then the randomized response algorithm
does the following.

For each row xi :

1. b←$ {0, 1}
2. If b = 0, then yi := P (xi).

Otherwise, yi ←$ {0, 1}
M(D) := (y1, . . . , yn)

For example, if we want to find how many students are MATH-CS concentrators, for each student,
we will decide to accurately report whether they are a concentrator if b = 0. Otherwise, if b = 1, we
will just report a random value. Thus, half of the output is the actual response while the other half
is just random.

Thm: Randomized response is ln 3-differential private.

How to estimate the query output α? Let’s say that α is the true percentage that satisfies P , and
that we observe k many 1’s in the output. Then k should be approximately

k ∼ n

2
· 1
2
+

n

2
· α

since roughly half of individuals give random results and half of individuals give true results. Using
this, we can approximate α from k.

How to make the mechanism more private? If we want more privacy, we can adjust the distribution
that b is sampled from. We can adjust b to be sampled as 0 less often, thus the probability that
individuals are revealing their true response is lower.

§23.2.2 Laplace Mechanism

The Laplace mechanism is another mechanism that is popular in practice. This can compute an
arbitrary real-valued function. This utilizes a notion called sensitivity of a function.

Definition 23.4
The sensitivity ∆f of a function f : X n → R is defined as

∆f := max
D1∼D2

|f(D1)− f(D2)|.

D1 ∼ D2 means that D1 and D2 are neighbors.

170

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

The Laplace mechanism is very simple. It justs computes f and adds some noise onto it. For this
reason, it is one of the most employed mechanism in practice.

Definition 23.5
The Laplace mechanism is defined to be

M(D) = f(D) + Lap(∆f/ϵ)

Here, Lap(b) gives the Laplace distribution whose probability density function (PDF) is given by

PDF(x) :=
1

2b
· exp

(
−|x|

b

)
.

For x ∼ Lap(b), we have that Pr[|x| ≥ bt] ≤ exp(−t).

Below is a plot of PDF for different values of b.

b = 1
b = 2
b = 4

Is a bigger b better for privacy, or worse? A higher b gives better privacy. Intuitively, the PDF
becomes wider, so the Lap(∆f/ϵ) term becomes more random.

Theorem 23.6 (Post-processing)
If M : Xn → Y is (ϵ, δ)-differentially private, and f : Y → Z is an arbitrary randomized
function, then f ◦M : Xn → Z is also (ϵ, δ)-differentially private.

171

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Theorem 23.7 (Group privacy)
If M : Xn → Y is (ϵ, 0)-differentially private, then M is (k · ϵ, 0)-differentially private for groups
of size k.

In the standard definition of differential privacy, we consider two databases that differ by at
most one row. However, in some cases, we may want to have a group of databases. Intuitively,
you apply M k times between each database, and each time you will lose ϵ privacy. In total,
you lose k · ϵ privacy.

Theorem 23.8 (Composition)
If Mi : X

n → Y is (ϵi, δi)-differentially private for i = 1, . . . , k, then

M(D) := (M1(D), . . . ,Mk(D))

is (
∑

ϵi,
∑

δi)-differentially private.

§23.3 Elliptic Curve Cryptography

So far, we have primarily been working with cyclic group G of order q with generator g where
DLOG/CDH/DDH holds. How large is q?

• For integer groups, q ∼ 2048 bits.

• For elliptic curve groups, q ∼ 256 bits.

Thus, elliptic curve groups are more space-efficient for cryptography! The known attacks for elliptic
curve groups scale on the order of √q, which allows us to have a smaller q parameter to ensure
security.

Definition 23.9
An elliptic curve is the set of solutions (x, y) to the equation

y2 = x3 + ax+ b

where 4a3 + 27b2 ̸= 0. The last condition is there so that we get the elliptic curve shape.

Example 23.10
The elliptic curve to y2 = x3 − x+ 9 is has a plot that looks something like the following. The
solutions (0,±3), (1,±3), (−1,±3) are indicated with dots.

172

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

−1 0 1

How to find rational points (x, y) ∈ Q2 on the curve? There are two ways, the chord method and
the tangent method.

1. Chord method: Given a point P and a point Q on the curve, it defines a line PQ. This
line must intersect the curve in a third point, R. For the curve in the previous example, if
P = (−1,−3) and Q = (1, 3), then this defines a line y = 3x. Plugging this into the equation
for the curve gives us

(3x)2 = x3 − x+ 9.

This is a cubic equation, so there must be 3 roots and thus 3 intersections. We know that the
product of the roots must be negative the constant term, so a1a2a3 = −9. We know two of the
roots a1 = 1 and a2 = −1, so we have that a3 = 9, which gives us the third point R = (9, 27).

We define this operation by P ⊞ Q = R. Notice that if P,Q are rational points, then R is
rational because all of our steps to find R is just multiplying, dividing, adding, and subtracting
with rational numbers.

P

Q

R = (9, 27)

173

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

2. Tangent method: Imagine if the cubic equation had a double root. This corresponds to a
point P being the tangent point to the line. In this case, we apply the operation onto itself
P ⊞ P = S.

P

S

174

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§24 April 23, 2025

In this lecture, we will continue our discussion of elliptic curve cryptography, and wrap up with a
discussion of the practical construction of block ciphers.

§24.1 Elliptic Curve Cryptography (cont.)

The lecture started with a brief review of elliptic curve cryptography, including a review of the
chord method and tangent method to help find rational points on the curve.

Geometrically, one can be convinced that (P ⊞Q)⊞X = P ⊞ (Q⊞X) and that P ⊞Q = Q⊞ P .
This gives hope that we can construct a group out of this, which is very handy for cryptography!

Definition 24.1
For prime p > 3, let Fp be a finite field, i.e. all of the integers {0, 1, . . . , p− 1} with addition
and multiplication. Let a, b ∈ Fp such that 4a3 + 27b2 ̸= 0.

An elliptic curve E defined over Fp, denoted E/Fp, is the set of all points (x, y) such that

• x, y ∈ Fp and

• y2 = x3 + ax+ b

Additionally, we include an abstract element O that is thought of as the “point at infinity”.

Example 24.2
y2 = x3 + 1 over F11 consists of the points

E/F11 = {O, (−1, 0), (0,±1), (2,±3), (5,±4), (7,±5), (9,±2)}

Elliptic curves over finite fields is the same definition as elliptic curves before except we restrict our
attention to Fp.

175

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Proposition 24.3
Elliptic curves over finite fields with the ⊞ operation form a group.

1. Closure: ∀g, h ∈ G, g⊞ h ∈ G. This is true because g, h defines a line, and we can figure
out the equation for this line over the finite field because finite fields support division.
After we find the line, we can plug it into the curve equation to get a cubic equation. We
have two roots, and we know the product of all of the roots is negative the constant term
in the cubic equation. Since finite fields support division, we can recover the third root.

2. Existence of identity: ∃e ∈ G such that ∀g ∈ G, e⊞ g = g ⊞ e = g. We let e = O be
the identity.

3. Existence of inverse: ∀g ∈ G, ∃h ∈ G, such that g ⊞ h = h⊞ g = e. If g = (x, y), then
the inverse h = (x,−y). You can see that drawing a line between g, h gives us the point
at infinity, so g ⊞ h = O.

4. Associativity: ∀g1, g2, g3 ∈ G, (g1 ⊞ g2)⊞ g3 = g1 ⊞ (g2 ⊞ g3). We discussed this earlier.

5. Commutativity (for abelian groups): ∀g, h ∈ G, g ⊞ h = h⊞ g. We discussed this
earlier.

Furthermore, the SEA algorithm can count the number of points on E/Fp in polylog(p) time.
Thus, figuring out the order of the group does not give us a problem.

Below are some curves that are standardized and used in practice. We only talk about the first one.
The others are secure to use in practice and have some tradeoffs that you are welcome to look into.

• curve secp2546r1 (P256)

– Prime p = 2256 − 2224 + 2192 + 296 − 1, hence only needs 256 bits to store!

– y2 = x3 − 3x+ b for some constant b that is a 255-bit string.

– Number of points on the curve is prime (close to p).

– Standardized generator point G. It does not have to be this particular G, since every
point is a generator, but it is standardized so that everyone can agree on the generator
to run DH key exchange for example.

• curve secp256k1

• curve 25519

176

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

§24.2 Block Cipher

In this course, we used block ciphers (e.g. AES), but we have not yet talked about how to construct
them.

Definition 24.4
A block cipher is a map F : {0, 1}λ × {0, 1}n → {0, 1}n, where λ is the key length and n is the
block length. Fk(·) will be a permutation/bijection from {0, 1}n to {0, 1}n. F−1

k (·) is efficiently
computable given k.

F is assumed to be a pseudorandom permutation (PRP).

Example 24.5
Advanced Encryption Standard (AES) has key length λ = 128, 192, or 256. The block
length is n = 128.

Before AES, there was the Data Encryption Standard (DES) with λ = 56 and n = 64.

We will see how to construct DES, which has similar ideas in constructing AES. To do so, we need
to talk about Substitution-Permutation Networks (SPN) and Feistel Networks.

§24.3 Substitution-Permutation Network (SPN)

We want to incorporate a design principle known as the “Avalanche Effect”, where a small change in
the input should have an effect on every part of the output. In particular, even if one-bit is changed
in the input, every bit in the output should be affected so that it looks completely different.

SPN proceeds as follows.

Step 1. Key mixing. Take input x and XOR it with sub-key k, i.e. x := x⊕ k. The result is 64-bit.

Step 2. Confusion Step. Split x into 8 parts of 8 bits each. On each part, apply an S-box, which is
a public permutation of 8 bits. Furthermore, 1-bit change in the input gives a 2-bit change in
the output.

Step 3. Diffusion Step. Take the output from each S-box and concatenate them together into a
64-bit result. Then use a public mixing permutation to shuffle the bits.

177

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

We can repeat this procedure for multiple rounds. For example, below is a 3-round SPN.

Different sub-keys are used in each round. These sub-keys are derived from a master key using a
key schedule, for example, by taking different subsets from the master key.

178

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Given the master key, we can compute F−1
k (y). First, use the key schedule to find each sub-key,

which we can use to XOR to get the inverse. Then, since each mixing permutation is public, we can
compute its inverse for each round. Additionally, each S-box is public, so we can find its inverse too.
Thus we have all the information we need to compute the inverse.

§24.4 Attacks on Reduced-Round SPN

1-round SPN without final key mixing. The adversary can begin with the output y, then invert
it starting from the end to the beginning. Since the permutations are public, the adversary can
compute x⊕ k, and since they know the input x, they can figure out k. Thus we have a complete
break. This shows that we need a final key mixing step.

1-round SPN with final key mixing. Assume the key and input is 16-bit. The adversary can
try to attack by enumerate the possible values of k2, then using the SPN derive k1 for each k2. This
takes O(216) time and gives 216 possible values for the master key.

§24.5 Feistel Network

Let x = L0||R0 be the input split into two halves, left and right. The R0 is fed into a round function
f1 and is XOR-ed with L0 to get R1. Then L1 is defined to be R0. This is repeated for several
rounds (3 rounds in the figure above). Let y = Ln||Rn be the output after n rounds.

To compute the inverse F−1
k (y), start from the output e.g. (L3, R3). We know R2 = L3, so we can

compute f3(R2). This satisfies f3(R2)⊕ L2 = R3, so we can find L2. Thus we have found (L2, R2),
and we can continue until we get x.

179

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

There are attacks on reduced-round Feistel Networks that we will not cover in lecture, but you can
think about it on your own.

§24.6 Data Encryption Standard (DES)

Recall that the block length is n = 64 and master key length is λ = 56 for DES. Use the Feistel
network on our 64-bit input x so that L0, R0 each get 32 bits. For the round functions, we use
something called a DES mangler function, which is essentially a SPN.

However, unlike an SPN, the S-boxes are not permutation, but rather they reduce the size from
6-bit to 4-bit. Additionally, the follow the following properties

1. Maps {0, 1}6 → {0, 1}4.

2. “4-to-1”: Exactly 4 inputs map to the same output.

3. 1-bit change of input gives at least 2-bit change in the output.

E is an expansion function. Given a 32-bit string AB where A and B are 16-bit, the output is a
42-bit string ABA.

For the key schedule, we have a master key with length 56 but need a 48-bit sub-key. To do so,
split the master key into two halves of 28-bits each, then take a random subset of 24-bits from each
half. Then concatenate these two subsets to form a 48-bit sub-key.

180

P. Miao (Spring 2025) CSCI 1515: Applied Cryptography

Remark 24.6. DES does seem very complicated. This is intentional to do so so that attacks are hard.

Multiple rounds of DES does not necessarily improve the security guarantees. Once DES is applied
multiple times, we lose our security guarantee, and we need to do additional cryptanalysis, so it is
unclear if it is secure. This is the reason NIST developed a new standard known as AES.

181

	January 22, 2025
	Introduction
	Staff
	Course Philosophy and Logistics

	What is cryptography?
	Secure Communication
	Message Secrecy
	Message Integrity
	Signal and Auth

	Zero-Knowledge Proofs
	Fully Homomorphic Encryption
	Secure Multi-Party Computation
	Further Topics
	Q & A

	January 27, 2025
	Encryption Scheme Basics
	Syntax
	Symmetric-Key Encryption Schemes
	Public-Key Encryption Schemes
	RSA

	January 29, 2025
	Basic Number Theory, continued
	RSA Encryption, continued
	Intro to Group Theory
	Computational Assumptions
	ElGamal Encryption
	Secure Key Exchange
	Prime Order Subgroups
	Message Integrity
	Syntax

	February 3, 2025
	Message Integrity
	Message Authentication Code
	Digital Signature
	Syntax
	Chosen-Message Attack

	RSA Signatures
	Other Signature Schemes

	A Summary So Far
	Authenticated Encryption
	Encrypt-and-MAC?
	MAC-then-Encrypt?
	Chosen Ciphertext Attack Security
	Encrypt-then-MAC

	Hash Function

	February 05, 2025
	Hash Function, continued
	Collision-Resistant Hash Function (CRHF)
	Random Oracle Model
	Constructions for Hash Function
	Applications

	Putting it Together: Secure Communication
	Diffie-Hellman Ratchet

	Block Cipher
	Pseudorandom Function (PRF), continued
	Pseudorandom Permutation (PRP)

	February 10, 2025
	Recap
	History of AES and DES
	Block Ciphers
	Modes of Operation

	February 12, 2025
	CBC-MAC
	Encrypt-last-block CBC-MAC (ECBC-MAC)
	Putting it Together
	One-Sided Secure Authentication
	Password-Based Authentication
	Salting
	Two-Factor Authentication

	February 19, 2025
	A Brief Recap: Secure Authentication
	Public Key Infrastructure
	Certificate Chain

	Case Studies
	SSH
	Secure Messaging
	Group Chats

	February 24, 2025
	Single Sign-On (SSO) Authentication
	Zero-Knowledge Proofs
	Zero-Knowledge Proofs
	Proof of Knowledge
	Honest-Verifier Zero-Knowledge
	Zero-Knowledge (Malicious Verifier)
	Zero-Knowledge Proof of Knowledge

	Example: Schnorr's Identification Protocol
	Proof of Knowledge
	Honest-Verifier Zero-Knowledge

	Example: Diffie-Hellman Tuple

	February 26, 2025
	Anonymous Online Voting
	Zero-Knowledge Proof of Knowledge
	Example: Diffie Hellman Tuple
	Non-Interactive Zero-Knowledge (NIZK) Proofs
	Fiat-Shamir Heuristic

	Putting it Together: Anonymous Online Voting
	Homomorphic Encryption

	March 3, 2025
	Anonymous Online Voting
	Additively Homomorphic Encryption
	Threshold Encryption
	Threshold Encryption: Elgamal

	Voting Framework
	Correctness of Partial Decryption
	Correctness of Encryption

	Proving AND/OR Statements

	March 5, 2025
	Blind Signature
	RSA Blind Signature
	Anonymous Online Voting
	Multiple Candidates
	More Examples of Sigma Protocols

	March 10, 2025
	Zero-Knowledge Proof for Graph 3-Coloring (All NP)
	Commitment Scheme
	Zero-Knowledge Proof for Graph 3-Coloring
	Circuit Satisfiability
	Proof Systems for Circuit Satisfiability

	March 12, 2025
	Succinct Non-Interactive Argument (SNARG)
	Merkle Tree Commitment Scheme
	Anonymous Transactions on Blockchains
	Byzantine Agreement
	Longest Chain Rule
	Extensions to Blockchain

	March 17, 2025
	Fully Homomorphic Encryption (FHE)
	Applications
	FHE Definition
	Constructions
	SWHE over Integers

	Learning With Errors (LWE) Assumption

	March 19, 2025
	Learning With Errors (LWE) Assumption
	Lattice-Based Cryptography
	Post-Quantum Encryption: Regev
	Ring LWE (RLWE) Assumption
	SWHE from RLWE (BFV)
	Relinearization in SWHE from RLWE

	March 31, 2025
	Fully Homomorphic Encryption (FHE)
	Private Information Retrieval (PIR)
	FHE Constructions
	Outsourcing Computation by FHE
	Outsourcing Computation by Secure Hardware
	Intel Software Guard Extension (SGX)

	April 2, 2025
	Hardware Secure Module (HSM)
	Secure Multi-Party Computation
	2-Party Computation
	Multiple Parties!

	Definition
	Feasibility Results

	Oblivious Transfer

	April 7, 2025
	Multi-Party Computation - Big Picture
	GMW
	AND Gates
	Complexities

	April 9, 2025
	Adversary Powers
	Yao's Garbled Circuit for Arbitrary function
	Oblivious Transfer
	OT Extension

	Putting it Together: Semi-Honest 2PC

	April 14, 2025
	Oblivious Transfer
	Yao's Garbled Circuit for Arbitrary function
	Optimizations

	Comparing Yao's and GMW

	April 16, 2025
	Private Set Intersection (PSI)
	Naïve Solution
	DDH-Based PSI

	Privacy-Preserving Machine Learning (PPML)
	Linear Regression
	Logistic Regression
	Neural Networks

	April 21, 2025
	Federated Learning
	Differential Privacy
	Randomized Response
	Laplace Mechanism

	Elliptic Curve Cryptography

	April 23, 2025
	Elliptic Curve Cryptography (cont.)
	Block Cipher
	Substitution-Permutation Network (SPN)
	Attacks on Reduced-Round SPN
	Feistel Network
	Data Encryption Standard (DES)

